
Document ID: FLXD813

FRS SoC Evaluation Design

Specification

FRS SoC Evaluation Design

Specification 2 (59) Version 1.5

This document could contain technical inaccuracies or typographical errors. TTTech Flexibilis
Oy may make changes in the product described in this document at any time.

Please, email comments about this document to support@flexibilis.com.

© Copyright TTTech Flexibilis Oy 2021. All rights reserved.

Trademarks

All trademarks are the property of their respective owners.

FRS SoC Evaluation Design

Specification 3 (59) Version 1.5

Contents

1 About This Document .. 7

1.1 Conventions Used in This Document .. 7

2 General .. 9

3 FPGA Evaluation Design ... 10

3.1 Top Level ... 10
3.2 QSYS Design ... 10

3.2.1 FES System ... 12
3.2.2 HPS .. 14

3.3 FES System Configuration .. 15
3.3.1 Generic Configuration .. 15
3.3.2 Interface Options .. 17
3.3.3 Interface Configuration ... 18

3.3.3.1 Port Interface Type ... 19
3.3.3.2 Port Address Configuration ... 20

3.3.4 Adapter Address Configuration .. 21
3.4 Interface Adapters .. 21
3.5 Avalon/AXI Address Map ... 21
3.6 Compilation .. 23

3.6.1 Folder Structure .. 23
3.6.2 QSYS Generation ... 23
3.6.3 Quartus Project .. 24

4 SW Evaluation Design .. 25

4.1 Boot .. 26
4.1.1 ROM Boot Code ... 27
4.1.2 Preloader .. 27
4.1.3 U-Boot .. 27
4.1.4 Linux ... 29

4.2 Kernel and Drivers ... 29
4.2.1 Linux ... 29
4.2.2 Device Tree .. 29
4.2.3 flx_frs (FES) ... 30

4.2.3.1 Device Tree Bindings .. 30
4.2.3.2 Principle of Operation ... 34
4.2.3.3 Accessing Switch Features ... 35
4.2.3.4 Port Link Mode Management .. 35
4.2.3.5 Managing Port Forwarding Mode .. 35
4.2.3.6 Accessing IPO Entries .. 35
4.2.3.7 Accessing Port Statistics Counters ... 36
4.2.3.8 Accessing MAC Address Table .. 36
4.2.3.9 Accessing Static MAC Address Table .. 36
4.2.3.10 Traffic Shaping .. 36
4.2.3.11 Traffic Policing... 37
4.2.3.12 Configuring MACsec ... 37
4.2.3.13 Auxiliary Network Interfaces ... 37
4.2.3.14 Independent Interfaces ... 38

4.2.4 flx_frtc (FRTC) .. 38
4.2.5 flx_time ... 39
4.2.6 flx_pio (Altera PIO) ... 39
4.2.7 flx_eth_mdio (Altera MDIO Core) ... 39
4.2.8 i2c_gpio .. 40
4.2.9 stmmac (EMAC) ... 40
4.2.10 Marvell (PHY) ... 41

4.3 User Space .. 41

FRS SoC Evaluation Design

Specification 4 (59) Version 1.5

4.3.1 XR7 PTP... 41
4.3.2 XR7 Redundancy Supervision ... 42
4.3.3 flx_fes_lib.. 42
4.3.4 XR7 Management Software ... 42

4.3.4.1 XR7 FCM .. 42
4.3.4.2 XR7 IFM .. 43
4.3.4.3 XR7 GUI .. 43

4.3.5 SSH Server... 43
4.3.6 Debian .. 43

4.4 Compilation .. 43
4.4.1 Toolchains .. 43
4.4.2 Preloader and U-Boot ... 44
4.4.3 Linux Kernel ... 45
4.4.4 Linux Drivers for Flexibilis IPs .. 45
4.4.5 Device Tree .. 46
4.4.6 Other Flexibilis Software .. 46
4.4.7 Third Party Software ... 46

4.5 SD-Card ... 46

5 Customization ... 49

5.1 Changing FES CPU Port Speed .. 49
5.2 Changing PHY address ... 49
5.3 FES Port without a PHY .. 49
5.4 Adding an FES Port ... 49
5.5 Change AXI Bus Type ... 50

6 Troubleshooting ... 51

6.1 Driver Loading .. 51
6.1.1 Letting Drivers Load Automatically ... 51
6.1.2 Loading Drivers Explicitly ... 51
6.1.3 Driver Load Verification .. 51

6.2 FES .. 52
6.2.1 Missing Functionality .. 52
6.2.2 FES Switch Register Access .. 52
6.2.3 FES Port Register Access .. 53
6.2.4 FES Port Adapter Register Access .. 53
6.2.5 FES Port Link Status and Speed for Copper Interfaces 53
6.2.6 Use of Correct PHY Driver ... 54
6.2.7 FES Port Link Status and Speed for Fiber Interfaces 55
6.2.8 SFP Module Change Detection .. 55
6.2.9 Traffic Problems ... 55

6.2.9.1 RGMII .. 56
6.3 FRTC.. 56

6.3.1 Checking FRTC Is Running.. 56
6.3.2 Rough FRTC Frequency Check ... 57

7 Abbreviations .. 58

8 References .. 59

Figures

Figure 1. Bit and Byte Order .. 7
Figure 2. Evaluation Design Block Diagram .. 10
Figure 3. SOC System Design Block Diagram .. 11
Figure 4. FES System with RGMII Component Block Diagram .. 13
Figure 5. HPS interfaces ... 14
Figure 6. Generics ... 15

FRS SoC Evaluation Design

Specification 5 (59) Version 1.5

Figure 7. Interface Options .. 17
Figure 8. FRTC/FPTS Options .. 18
Figure 9. Interface Configurations ... 19
Figure 10. Port Address Configurations .. 20
Figure 11. Adapter Address Configurations .. 21
Figure 12. Folder Structure .. 23
Figure 13. SW Evaluation Design .. 25
Figure 14. SW Evaluation Design boot process .. 27

Tables

Table 1. Avalon Address Map ... 23
Table 2. Use of drivers with supported boards .. 29
Table 3. FES driver API header files ... 35
Table 4. flx_fes_lib files ... 42
Table 5. SD-card structure .. 46

FRS SoC Evaluation Design

Specification 6 (59) Version 1.5

Revision History

Rev Date Comments

0.1 15.5.2014 Draft

0.2 2.10.2014 Typo fixes

0.3 12.2.2015 SoC EDS 14.0.2 update

More information about FRS driver

1.0 12.2.2015 Approved in review

1.1 26.10.2015 Added troubleshooting chapter

Driver information update

1.2 23.3.2016 Updated SW module names and descriptions. Replaced
ALT_TSE adapter with SGMII/1000Base-X

1.3 3.8.2016 Updated QSYS design description. FRS Redbox was replaced by
FES system. Updated flx_frs driver descriptions for new features
and related flx_frs_tool command examples. Added LED control
descriptions.

1.4 30.8.2016 Added support for Novtech NOVSOM CVLite and NetLeap board
combination.

1.5 26.4.2021 Changed the support for FRS SoC Eval board.

FRS SoC Evaluation Design

Specification 7 (59) Version 1.5

1 About This Document

This document describes the evaluation design for Flexibilis Redundant Switch (FRS) [7] for
Cyclone V SoC FPGA. FRS is an Ethernet switch Intellectual Property (IP) core targeted at
programmable hardware platforms. FRS is a variation of Flexibilis Ethernet Switch (FES) [7].

The purpose of the Evaluation Design is to provide an FRS evaluation platform and it may be
used as is or modified as required. The Evaluation Design implements a HSR/PRP RedBox
with support for 1588 PTP ordinary and transparent clocks. The Evaluation Design is provided
for FRS SOC Evaluation board, which is available via TTTech Flexibilis. The reference design
is downloadable from www.flexibilis.com or https://www.tttech-
industrial.com/products/flexibilis/. There is also a Reference Design for Cyclone IV GX and
Cyclone V GX/GT evaluation boards, but it is not covered by this document.

Chapter 2 describes the Evaluation Design in general. Chapter 3 describes the FPGA part of
the Evaluation Design, i.e. VHDL, IP and QSYS issues. Chapter 3 describes the software
included in the Evaluation Design. Chapter 5 contains information for customizing the design.
Chapter 6 includes troubleshooting information and debugging tips. Chapter 7 contains
abbreviations and chapter 8 references.

1.1 Conventions Used in This Document

Register descriptions in this document follow these rules: Unless otherwise stated, all the bits
that activate or enable something are active when their value is 1 and inactive when their
value is 0. The explanation of the bit types is the following:

RO = Read Capable Only. The bits marked with RO can be read. Writing to these bits is
allowed if not otherwise stated. If writing is allowed, it does not affect the value of the bit.

R/W = Read and Write capable. The bits can be read and written. Writing 1 to the bit makes
its value 1. Writing 0 to the bit makes its value 0.

R/C = Read and Clear capable. The bits can be read and cleared. Writing 0 to the bit makes
its value 0. Writing 1 does nothing.

R/SC = Read and Self Clear. The bits can be read. After reading bits, the value automatically
returns back to 0.

R/W/SC = Read, Write and Self Clear. The bits can be read and written. Writing 0 to the bit
does nothing. Writing 1 to the bit makes its value 1 for a while, but after that the value
automatically returns back to 0.

The bits marked as Reserved should not be written anything but 0, even if they are marked as
read capable only, because their function may change in future versions.

Bit and byte order used for 16, 32 and 64 registers is depicted in Figure 1.

Byte 0Byte 1

08Bit 15 7

LSBMSB

0

Byte 1 Byte 0Byte 2Byte 3

8162431 23 15 7

LSB

32

Byte 5 Byte 4Byte 6Byte 7

404856Bit 63 55 47 39

MSB

Byte 1 Byte 0Byte 2Byte 3

8Bit 31

MSB LSB

16bit Bus

or

Register:

32bit Bus

or

Register:

64bit Bus

or

Register:

0715162324

Figure 1. Bit and Byte Order

http://www.flexibilis.com/
https://www.tttech-industrial.com/products/flexibilis/
https://www.tttech-industrial.com/products/flexibilis/

FRS SoC Evaluation Design

Specification 8 (59) Version 1.5

Signal names are written in document with SignalName style. Block names are written with

Capital first letter. Pseudo code is written with PseudoCode style and command line

commands are written with CommandLine style.

FRS SoC Evaluation Design

Specification 9 (59) Version 1.5

2 General

The FRS Evaluation Design consists of FPGA and SW design. The SW is run on ARM
Cortex-A9 located in the Cyclone V Hard Processor System (HPS). The FPGA design is
implemented using Altera QSYS tool that provides a graphical design tool for FPGA systems.
FPGA design compilations are made using Altera Quartus II tool.

Software is built using cross-compiler toolchains. A bare-metal cross-compiler toolchain is
used to build bootloaders (Preloader and U-Boot). Another cross-compiler toolchain is used to
build Linux kernel, drivers and user space software. Additional GNU/Linux utilities are also
needed to generate bootable SD-card image. Section 4.4.1 contains more information about
the needed tools.

Version information about the tools used, the IP blocks and the SW components are listed in
the Evaluation Design release notes included in the release package.

FRS SoC Evaluation Design

Specification 10 (59) Version 1.5

3 FPGA Evaluation Design

The VHDL and QSYS part of the design is described in this chapter.

3.1 Top Level

The Evaluation Design block diagram with external interfaces is described below.

FRS Reference Design

SOC_SYSTEM(QSYS)

MDIO Clocks and reset

User LEDs (Onboard)

Oscillator

SD Card

FPGA

Evaluation Board

1GB DDR Memory

UART-to-USB (Console)

4 x RGMII

SFP
SFP

SFP
PHY (RJ45)

Figure 2. Evaluation Design Block Diagram

The Evaluation Design provides the following interfaces

- 4 external interfaces
o There are 4 local PHY’s (RGMII) connected to FRS
o Redundant Port A
o Redundant Port B
o 2 Interlinks

- STA MDIO(MDIO for PHY management)
- Link LEDs
- DDR for 1 GB DDR memory
- SDMMC/SDIO for SD card
- UART for Console connection via UART-to-USB bridge
- Clocks and reset

o 50MHz or 25 MHz
▪ Routed through PLL to 125MHz and 25 MHz clocks
▪ Routed through PLL to SerDes clock
▪ Routed directly for Avalon clock

The QSYS Design, SOC_SYSTEM is instantiated in soc_system_top.vhd top level design file.

3.2 QSYS Design

The QSYS design, soc_system, is a combination of many QSYS components and their sub
components. The block diagram below describes the QSYS system in the highest level.

FRS SoC Evaluation Design

Specification 11 (59) Version 1.5

RGMII

Authentication

Optional link LED

FES System

clk_50

clk_125

clk_25

HPS

I2C
(PIO)

PIO
(I2C) I2C

I2C

I2C

I2C

PIO Reference
Design Version

Sys ID

Design Version

Interrupt Capturer

memory

IO

DDR

IO

SOC_SYSTEM

Clock BridgeAuthentication

PLL_CPU

PLL_ETH

PLL_XCVR

4 x
I2C

(PIO)

MDIO
master

MDIO

Figure 3. SOC System Design Block Diagram

Soc_system includes the following components:

1. Clock bridge
a. Clock bridge is used to introduce the input clock for the QSYS system

2. PLLs
a. PLL_CPU, 50 MHz clock for HPS and Avalon
b. PLL_ETH, 25 MHz for Internal MII and 125MHz for FES system clock and

reconfiguration clock
c. PLL_XCVR, 125 MHz for transceivers

3. Clock and reset for 25, 50 and 125MHz.
a. Clock source components are used in QSYS designs to feed clock and resets

into the QSYS system/components
4. FES System

a. More detailed description in 3.2.1
5. Hard Processing System (HPS)

a. More detailed Description in 3.2.2
6. Evaluation Design Version

a. Includes Evaluation Design version number
7. SYS ID

a. Includes System ID
8. I2C

a. Actually a Parallel IO block (PIO), used to generate I2C interface
9. MDIO master

a. Used to access RGMII PHY devices

FRS SoC Evaluation Design

Specification 12 (59) Version 1.5

10. Interrupt Capturer
a. Captures Interrupt inputs and presents them as registers readable via Avalon

Slave port

3.2.1 FES System

The FES System QSYS component is actually a subsystem i.e. it includes other QSYS
components. It is generated based on configurations with tcl scripts, which can be found in
the FES System component folder. The FES System component block diagram with RGMII
adapters is presented in Figure 4.

In previous Reference design versions, up to 2.9.4, similar block was called FRS Redbox.
However, as the Flexibilis Ethernet Switch (FES) and Flexibilis Redundant Switch (FRS)
were combined into same IP block, the FRS Redbox component was also replaced with a
new QSYS component.

FRS SoC Evaluation Design

Specification 13 (59) Version 1.5

Port0

Port1

Port2

Port3

Switch

EMAC Adapter

RGMII

RGMII

GMII

GMII

GMII

GMII

Avalon
Arbiter

Avalon
Splitter

FRTCTime

AVALON

FES

System CLK

Avalon CLK50 MHz and reset

125 MHz and reset

IRQ BridgeIRQ IRQ

Authentication

RGMII

RGMII

FES System

EMAC CLK25 MHz and reset

Avalon A

RGMII

RGMII

GMII

Avalon B

Figure 4. FES System with RGMII Component Block Diagram

FES

FES QSYS component is the Ethernet switch core which instantiated Flexibilis Ethernet
Switch [7]. It can be instantiated also in QSYS as a separate component “Flexibilis Ethernet
Switch” (FES_core) or in the VHDL code.

RGMII

RGMII adapters provide interface conversion between GMII (FRS) and RGMII. PHY
configuration is done with separate MDIO masters (instantiated in QSYS top level).

EMAC ADAPTER

EMAC adapter provides GMII interface conversion so that it is compatible with HPS EMAC.

RECONFIG

Since the design implements Transceivers in the SGMII/1000BASE-X adapter, this block is
required to be instantiated. Currently it does not include any functionality.

FRTC

Flexibilis Real Time Clock provides time information for FRS. FRTC can be controlled via
Avalon.

IRQ BRIDGE

IRQ Bridge component provides a QSYS supported method for interrupt mapping.

FRS SoC Evaluation Design

Specification 14 (59) Version 1.5

CLOCK SOURCES

FES System component includes four clock source components (mii_clk, avalon_clk,
system_clk, reconfig_clk), that are used to map clock signals into QSYS components.

AVALON ARBITER

The Avalon Arbiter is able to provide arbitration functionalities for two different Avalon
interfaces. However, in this case only one Avalon interface is used.

AVALON SPLITTER

The Avalon Splitter component is generated automatically by the QSYS to support older FRS
control mechanisms, even though it would not be required in this case.

3.2.2 HPS

The HPS QSYS component provides the user the possibility to modify HPS interfaces and
certain configurations. If these setting or configurations are changed, it is important to always
regenerate the Preloader (SPL).

The HPS interfaces are shown in Figure 5.

HPS

EMAC0

EMAC1h2f_lw_axi_master

Memory

Flash
Controller

SDMMC/IO
Controller

USB
Controller

SPI
Controller0

SPI
Controller1

UAR
Controller

I2C
Controller

DDR

GMII
(FRS)

GMII /
RGMII

QSPI

SDMMC/IO

USB

SPI

SPI

UART to
USB

I2C

HPS IO

GPIO GPIO

 Figure 5. HPS interfaces

The HSP configuration includes only one AXI interface (h2f_lw_axi_master), which is used to
communicate with the FPGA side of the SOC chip. The HPS acts as the bus master in this
bus.

The most important HPS interfaces, in addition to the AXI interfaces, are two Ethernet MAC
(EMAC) interfaces, DDR interface and the SDMMC/IO interface. EMAC0 is connected to the

FRS SoC Evaluation Design

Specification 15 (59) Version 1.5

FRS Port0 and it is used to send and receive traffic over the FRS. The EMAC1 provides a
change of external Ethernet port for the HPS that is not related to the FRS. EMAC0 interface
is always GMII. The SDMMC/IO interface is connected to an external SD card slot and the SD
card is used as the boot source of the whole SOC system, while the DDR is used as the
runtime memory. Most of the other interfaces are not used in this Evaluation Design or are
just used for development purposes. On the QSYS level most interfaces are part of the HPS
IO interface, but Memory and EMAC interfaces are shown separately.

3.3 FES System Configuration

This chapter describes how FES system component is configured and how configurations
affect the actual design.

To ease the configuration, instantiation and mapping of VHDL designs, the QSYS component
provides automatic component and signal mapping and instantiation based on the
configuration made in QSYS GUI.

3.3.1 Generic Configuration

Figure 6. Generics

FES System Generics configurations page is shown in Figure 1, with settings used in this
case. The configurable generics are:

- FES_PORT_HIGH
o Sets the port count. Value 4 means that there are five ports.

FRS SoC Evaluation Design

Specification 16 (59) Version 1.5

- PORT_STATE_DEFAULT
o Sets the default value for all PORT_STATE registers. Value 288 is 0x0120,

which sets ports to forwarding mode, GMII and 1000Mbps
- GIGABIT

o Enables Gigabit operation (optional feature of FES). For more information
see FES user manual [7]

o Gigabit operation is enabled in the reference design
- COUNTERS

o If COUNTERS = ‘1’ then the COUNTERS block is synthesized (optional
feature of FES). Use value ‘0’ when no COUNTERS are needed to save
logic.

o Counters are enabled in the reference design.
- QUEUES

o Number of priority queues (optional feature of FES). Possible values are 4
and 8. For more information see FES user manual [7].

o Reference design uses 8 priority queues. Note that the basic FRS variation
supports 4 queues and 8 queues is an extension.

- MACSEC
o MACSEC port mask. Enables MACSEC functionality on corresponding port

(optional feature of FES). For more information see FES user manual [7].
o MACSEC is supported in port 1 and 2. Note that the basic FRS variation

does not support MACSEC but is available as an extension.
- HSR_PORTS

o Defines which ports support HSR. HSR support is optional features of FES.
o Decimal value 14 means that ports 1,2 and 3 include HSR capabilities

- PRP_PORTS
o Defines which ports support PRP. PRP support is optional features of FES.
o Decimal value 14 means that ports 1,2 and 3 include PRP capabilities

- CT_PORTS
o Enables Cut-through operation between two HSR ports. Cut-through is an

optional feature of FES. For more information see FES user manual [7].
o Value 6, means ports 1 and 2.

- SMAC_TABLE_ROWS
o Defines how many rows are supported by the SMAC. SMAC is an optional

feature of FES [7].
o In this reference design 128 SMAC table rows are supported. Note that the

basic FRS variation does not support SMAC, but it is available as an
extension.

- POLICING
o Enables Policer functionalities (optional feature of FES). For more information

see FES user manual [7].
▪ Value 0: no policing functionalities (bandwidth limiting) supported
▪ Value 1: Policing supported via IPO
▪ Value 2: Policing supported via SMAC
▪ Value 3: Policing supported via SMAC/IPO, selectable via registers

configurations
o In the reference design policing is enabled via SMAC and IPO. Note that

basic FRS variation does not support policing, but it is available as an
extension.

- POLICERS
o Defines how many policers are supported per port. Value 7 means 128

policers, value 8 means 256 policers etc.
o Requires that POLICING generic has a value 1,2 or 3.

- SHAPERS
o Enables Shaping functionalities (optional feature of FES). For more

information see FES user manual [7].
o Shaping is supported by the reference design. Note that the basic FRS

variation does not support shaping, but it is available as an extension.

FRS SoC Evaluation Design

Specification 17 (59) Version 1.5

- CFG_CLK_FREQ
o This defines the system clock frequency for the FRS and it must be set to

match the actual clock frequency. In this case it is 125 MHz

3.3.2 Interface Options

Figure 7. Interface Options

In the Interface Options page, Figure 7, it is possible select what interfaces FES System
provides.

1. Avalon slave A interface
a. Enabled in the reference design and connected to the NIOS in the QSYS

2. Avalon slave B interface
a. Disabled

3. External Speed interface
a. Not enabled in the reference design. Could be used to set speed/interface

mode for the FRS ports.
4. Authentication Interface

a. Not enabled in the reference design. Must be exported and used, if an
external security chip is used for IP license validation

5. Transceiver reconfiguration interface

FRS SoC Evaluation Design

Specification 18 (59) Version 1.5

a. Not enabled in the reference design. Could be used for providing
reconfiguration interface from external controller. Usually used in designs with
multiple FES cores using transceiver interfaces.

6. Traffic LED interface
a. Enabled in the reference design. Provides signals for driving traffic LEDs (if

provided by the interface adapters)

In addition this page defines the following interface related generics:

- AVR_ADDR_MSB
o Sets the Avalon address bus width. As a MSB definition it is actual width

minus one.
- LED_ACTIVE

o Selects logic level when Link LEDs should lit.
- GXB_CHANNEL_OFFSET

o Not applicable since only one FRS is instantiated inside one FPGA chip.
o In case there would be multiple FRS inside one FPGA, the

GXB_CHANNEL_OFFSET needs to be individual for each.

3.3.3 Interface Configuration

In the Interface configurations page there are three sub pages.

FRTC configurations are common for Interface configuration pages.

Figure 8. FRTC/FPTS Options

with these setting it is possible to enable the PPS signal output and start FRTC clock without
register configurations. The Event input requires a separately licensable block called Flexibilis
PPX Timestamper (FPTS).

FRS SoC Evaluation Design

Specification 19 (59) Version 1.5

3.3.3.1 Port Interface Type

Figure 9. Interface Configurations

The Port Interface type, Figure 9, is used to select interface type for each port. In this case:

- Port 0 is used for the HPS EMAC, therefore it includes an EMAC adapter.
- Ports 1, 2, 3 and 4 are RGMII

Other possible interface types include:

- MII PHY mode
o Provides interface, which is compatible with most PHY interfaces

- GMII/MII Native (None)
o Provides FRS GMII interface without modifications
o Mainly for internal use i.e. QuadBox

- 1000BASE-X only
- 100BASE-FX
- RMII
- SGMII/1000base-X v2
- SGMII/1000base-X/100base-FX Triple mode adapter
- AFEC (Advanced Flexibilis Ethernet controller)

FRS SoC Evaluation Design

Specification 20 (59) Version 1.5

3.3.3.2 Port Address Configuration

Figure 10. Port Address Configurations

Port base address configuration, Figure 10, defines the Avalon address offset from FES
System base address for FRS Port and Switch configuration registers. Addresses are defined
as word addresses. Avalon address map is defined in Chapter 3.5.

FRS SoC Evaluation Design

Specification 21 (59) Version 1.5

3.3.4 Adapter Address Configuration

Figure 11. Adapter Address Configurations

Figure 11 presents adapter base address configuration, which defines the Avalon address
offset from the FES System base address for adapter registers. Addresses are defined as
word addresses. Avalon address map is defined in Chapter 3.5.

3.4 Interface Adapters

Interface adapters are used with FRS to provide other Ethernet interface types than the FRS
native MII/GMII. Figure 9 illustrates the Adapters used in this Evaluation Design. However,
the FES System provides also other interface adapters. Interface adapters are defined in
separate specifications

3.5 Avalon/AXI Address Map

The Avalon Address Map is based on the settings in QSYS and its components. The Table 1
below defines the Address map for this Evaluation Design.

FRS SoC Evaluation Design

Specification 22 (59) Version 1.5

Component BUS and Base Address

MDIO master 0x0001_2000

Sys ID 0x0001_0000

Rev ID 0x0004_0500

Interupt capturer 0x0000_0000

FES System 0x0010_0000

Switch core

Switch registers 0x0010_0000

TS 0x0010_1000

VLAN 0x0010_2000

FRS Port 0

GEN 0x0011_0000

HSR 0x0011_1000

PTP 0x0011_2000

CNT 0x0011_3000

IPO 0x0011_4000

FRS Port 1

GEN 0x0012_0000

HSR 0x0012_1000

PTP 0x0012_2000

CNT 0x0012_3000

IPO 0x0012_4000

FRS Port 2

GEN 0x0013_0000

HSR 0x0013_1000

PTP 0x0013_2000

CNT 0x0013_3000

IPO 0x0013_4000

FRS Port 3

GEN 0x0014_0000

HSR 0x0014_1000

PTP 0x0014_2000

CNT 0x0014_3000

IPO 0x0014_4000

FRS Port 4

GEN 0x0015_0000

HSR 0x0015_1000

PTP 0x0015_2000

CNT 0x0015_3000

IPO 0x0015_4000

Adapter P0

EMAC (No Content) 0x0016_0000

FRS SoC Evaluation Design

Specification 23 (59) Version 1.5

Adapter P1

RGMII 0x0016_0200

Adapter P2

RGMII 0x0016_0400

Adapter P3

RGMII 0x0016_0600

Adapter P4

RGMII 0x0016_0800

FRTC 0x0017_0000

Table 1. Avalon Address Map

3.6 Compilation

This chapter describes shortly the Evaluation Design compilation steps. For more detailed
information about Quartus, please refer to the documentation available in Altera’s website.

The Evaluation Design package includes ready-to-use program files, so compilation is not a
mandatory step.

3.6.1 Folder Structure

The Evaluation Design folder structure is illustrated in Figure 12. The fpga folder includes
bin_qsys folder, which includes most of the quartus project files. In addition there is an ip
folder, which includes QSYS component files. The FPGA project expects that external and
encrypted_ip folders are in place and have the correct content. Therefore the user should
place separate FRS and FRTC cores into the correct folders or change the file path settings
in Quartus project accordingly.

FRS Reference Desing

→ cyclone5soc_eval

→ external

→ frtc (To be added)

→ fpts (To be added)

→ fpga

→ bin_qsys

→ ip

→ bin

→ sw

→ encrypted_ip
FRS files

Figure 12. Folder Structure

3.6.2 QSYS Generation

The Evaluation Design includes soc_system.qsys file, which includes information about the
QSYS system used in this design. The QSYS system needs to be generated before the first
compilation is done, since the QSYS result design files are not included in the package.
Normally Quartus tool generates the files automatically during normal compilation flow.

FRS SoC Evaluation Design

Specification 24 (59) Version 1.5

In order to modify the QSYS system it must be opened from Quartus. First, open the

soc_system.qpf (Quartus Project File) with quartus. Then on the toolbar open the QSYS .
Once QSYS opens, it will query the qsys system file to be opened. This is the
soc_system.qsys file that is located in the bin_qsys folder. Once correct system has opened
the user can either make changes or then directly generate a new qsys design. Generation is
activated from the Generation page, pressing the Generate button. There should not be any
errors or warnings during the generation. Once generation has finished, all necessary files
have been generated and user can return to the Quartus project.

3.6.3 Quartus Project

The quartus project is configured with the correct assignments (pinout, IO Voltage, clock
constrains etc.) and file references. The user should also make sure that the links to the files
are correct, especially for the external IP cores.

To be able to compile the design, the user should make sure that the required licenses are
available for the Quartus tool. The license setup can be found in the Tools menu. This
Evaluation Design requires:

- FRS (Flexibilis)
- FRTC (Flexibilis) and FPTS

o OCP license provided for evaluation
- GMII to RGMII adapter (TTTech Flexibilis)

Once the QSYS system is generated and the licenses are set, the design can be compiled in
normal way. The design will generate warnings, and they should be looked thought. However,
they all should be generated by Altera blocks and should not affect the operations. In case of
suspicious warnings please contact TTTech Flexibilis.

FRS SoC Evaluation Design

Specification 25 (59) Version 1.5

4 SW Evaluation Design

SW Evaluation Design is implemented as a modular design. The modules are depicted in
Figure 13.

XR7 GUI

XR7 PTP
XR7 Redundancy

Supervision

XR7 FCM

Linux

Control

Daemons

User space

libraries

Kernel and

drivers

Preloader U-Boot

flx_frs

(FES)

Bootloaders

flx_frtc

(FRTC)

flx_time

flx_pio

(Altera PIO)

flx_i2c_mdio

(SFP PHY)

marvell

(PHY)

stmmac

(HPS EMAC)

flx_frtc_clock_if

flx_packet_if

os_if

flx_fes_lib

XR7 Interface

Manager

routing (FCM)

ip (FCM)

sync (FCM) supervision (FCM)

vlan (FCM)

ethernet (FCM)

Tomcat

Altera Flexibilis FES Flexibilis Legend/Source

Debian

Third party

Base system

packet_lib

supervision_lib

Device tree

i2c-gpio
micrel

(PHY)

flx_eth_mdio

(Altera MDIO Core)

Figure 13. SW Evaluation Design

FRS SoC Evaluation Design

Specification 26 (59) Version 1.5

The modules depicted in Figure 13 as Flexibilis FRS with blue color are important core SW
components of the SW Evaluation Design. They are needed to make use of FRS features like
HSR, PRP and PTP. The other Flexibilis modules provide NETCONF [11] interface to
daemons and GUI, which uses the NETCONF interface.

Green modules are needed for low level SoC FPGA configuration and booting OS. Altera
SoC EDS includes source code for HPS Preloader and U-Boot and tools to build them.
Handoff files from FPGA design are needed during the build process. SoC EDS contains also
information for downloading matching Linux kernel source tree.

SW Evaluation Design is based on Debian [12] GNU/Linux distribution. The core SW modules
for FES require only supported kernel (Linux in this case) and a C library. Although SW
Evaluation Design is based on Debian, it is not a requirement for using these Flexibilis SW
modules.

Source codes for protocol stacks (XR7 PTP Time daemon and XR7 Redundancy supervision)
and for other software from Flexibilis Oy except Linux drivers, are delivered separately and
they require a license with Flexibilis Oy. All protocol stacks and other Flexibilis software are
included in the Evaluation Design release in a binary format and the functionality can be
verified using the evaluation boards.

In the following sections SW Evaluation Design boot process and modules is described first,
followed by descriptions of each major section of the SW stack and its components.

4.1 Boot

FRS SoC SW Evaluation Design uses SD/MMC boot and is thus booted from an SD-card.
The boot process is depicted in Figure 14. Structure of the SD-card is described in section
4.5, see Table 5.

The following sections explain the role of each boot related module and how it is used in the
SW Evaluation Design. For more details about the general SoC boot process and other boot
alternatives please refer to Altera SoC documentation.

FRS SoC Evaluation Design

Specification 27 (59) Version 1.5

ROM Boot

Code

Preloader

U-Boot

Linux

init

init scripts

SoC HPS ROM

SD-card partition 2

SD-card partition 3

(root filesystem)

Daemons

SD-card partition 1

Figure 14. SW Evaluation Design boot process

4.1.1 ROM Boot Code

SoC HPS boot mode is selected using external signals, typically using DIP switches or
jumpers on evaluation boards. When powered on, HPS ROM Boot Code checks the selected
boot mode and operates accordingly. With SD/MMC boot it checks the SD-card for an MBR. If
it finds one, it looks for a partition with type 0xA2. When found, it reads bootloader from start
of the partition to on-chip RAM (OCRAM) at address 0xFFFF0000 and executes the
bootloader from there.

4.1.2 Preloader

HPS Software Preloader, sometimes referred to as SPL, is the first piece of software run by
HPS after Boot ROM. Preloader generation tools are part of Altera SoC EDS.

Some settings in Altera Qsys or Quartus II affect the Preloader, which means that the
Preloader binary needs to be rebuilt from sources whenever such changes are made to
FPGA design.

See Altera SoC Embedded Design Suite User Guide [13] for more information about the
Preloader.

Because the size of OCRAM is limited (64 KiB), the whole U-Boot bootloader does not fit in
there and Altera SoC Linux boot uses so called Software Preloader. It is a minimalistic
bootloader which initializes various pieces of hardware, including SDRAM, and then reads the
actual U-Boot bootloader from the 0xA2 partition offset 0x40000 (256 KiB) into SDRAM and
executes the U-Boot bootloader from there.

Preloader behavior can be changed at compile time, for example to boot from QSPI flash
instead.

4.1.3 U-Boot

U-Boot is a Linux bootloader for embedded systems and it is used to boot Linux on Altera
SoC. It is the second piece of software run by HPS after Boot ROM. See Altera SoC

FRS SoC Evaluation Design

Specification 28 (59) Version 1.5

Embedded Design Suite User Guide [13] for more information about the U-Boot bootloader
for Altera SoC.

U-Boot in turn reads its environment right after the MBR. If it finds a valid environment, it
loads it, otherwise it uses hard-coded environment which is defined at U-Boot compile time.
U-Boot environment contains U-Boot variables which include also the U-Boot commands
used to boot Linux. Environment used in the SW Evaluation Design is shown in Listing 1, with
important settings in bold.

Listing 1. SW Evaluation Design U-Boot environment

ECC_SDRAM=0

ECC_SDRAM_DBE=0

ECC_SDRAM_SBE=0

baudrate=115200

bootargs=console=ttyS0,115200 root=/dev/mmcblk0p2 rw rootwait

bootcmd=run fpgaload ; run mmcload ; run mmcboot

bootdelay=5

bootimage=uImage

bootimagesize=0x500000

ethact=mii0

fdtaddr=0x00000100

fdtimage=socfpga.dtb

fdtimagesize=0x2000

filesize=37C3B4

fpgabin=soc_system.rbf

fpgadata=0x2000000

fpgadatasize=0x700000

fpgaload=mmc rescan ;

${mmcloadcmd} mmc 0:1 ${fpgadata} ${fpgabin} ;

fpga load 0 ${fpgadata} ${filesize}

loadaddr=0x00007fc0

mmcboot=setenv bootargs console=ttyS0,115200 root=${mmcroot} rw

rootwait ; bootm ${loadaddr} - ${fdtaddr}

mmcload=mmc rescan ;

${mmcloadcmd} mmc 0:${mmcloadpart} ${loadaddr} ${bootimage}

; ${mmcloadcmd} mmc 0:${mmcloadpart} ${fdtaddr} ${fdtimage}

mmcloadcmd=ext2load

mmcloadpart=1

mmcroot=/dev/mmcblk0p3

qspiboot=setenv bootargs console=ttyS0,115200 root=${qspiroot} rw

rootfstype=${qspirootfstype} ;

bootm ${loadaddr} - ${fdtaddr}

qspibootimageaddr=0xa0000

qspifdtaddr=0x50000

qspiload=sf probe ${qspiloadcs} ;

sf read ${loadaddr} ${qspibootimageaddr} ${bootimagesize} ;

sf read ${fdtaddr} ${qspifdtaddr} ${fdtimagesize}

qspiloadcs=0

qspiroot=/dev/mtdblock1

qspirootfstype=jffs2

ramboot=setenv bootargs console=ttyS0,115200 ;

bootm ${loadaddr} - ${fdtaddr}

stderr=serial

stdin=serial

stdout=serial

verify=n

FRS SoC Evaluation Design

Specification 29 (59) Version 1.5

U-Boot runs the commands from bootcmd variable. SW Evaluation Design loads FPGA

image file to SDRAM and configures the FPGA with it. Then it loads Linux kernel image and
device tree to SDRAM, to different addresses. Finally it sets Linux kernel command line and
passes control to Linux kernel passing it also address of the device tree.

4.1.4 Linux

Linux kernel does its own boot time initializations, mounts root filesystem and starts the init
process. From then on system uses Debian boot scheme. SW Evaluation Design includes init
scripts to load the FES and FRTC drivers, which are built as kernel modules, and start the
daemons.

The i2c devices defined for Linux i2c-gpio driver in the device tree do not get automatically
bound to the i2c-gpio driver. For that reason the SW Evaluation Design contains the following
code in one of the boot scripts after loading the flx_pio drivers

for i in /sys/devices/soc.0/i2c.* ; do

 echo ${i##*/} > /sys/bus/platform/drivers/i2c-gpio/bind

done

4.2 Kernel and Drivers

Summary of main drivers used with each supported board are listed in Table 2.

Driver Use

flx_frs FES

flx_time Time interface

flx_frtc FRTC

Stmmac HPS EMAC

Marvell Copper SFP PHYs

fllx_eth_mdio MDIO busses to FPGA Ethernet PHYs

flx_pio FPGA PHY reset and LEDs

Table 2. Use of drivers with supported boards

4.2.1 Linux

Linux kernel for Altera SoC is used in the FRS SoC SW Evaluation Design. Some small
patches had to be applied to make it work in a desired way, mostly to support HPS EMAC
operation also without PHY using the fixed-link Linux PHY driver (CONFIG_FIXED_PHY).
The default kernel configuration is also changed slightly to enable needed features.

See Altera SoC Embedded Design Suite User Guide [13] for more information about the
Linux kernel for Altera SoC.

SW Evaluation Design Linux drivers for Flexibilis IPs are modular. All needed Linux drivers
from Flexiblis are licensed under GPL v2. Descriptions of Flexibilis Linux drivers used in the
SW Evaluation Design follow.

4.2.2 Device Tree

Linux kernel for Altera SoC HPS needs device tree to function correctly or at all. Device tree
contains information about the system and its components or devices and is used by device
drivers to handle the hardware correctly. Device tree is thus a way to tell Linux which devices
are present in the system, and various device specific configuration information. Linux drivers
can then be bound to the devices automatically and drivers have a way to get configuration
information of its devices.

Device trees are used in binary form (.dtb files), but manipulated as text files in source form
(.dts files). Conversion between source and binary is possible in both directions without loss
of functionality using device tree compiler dtc, but some source form constructs may get

replaced by something else in the binary form.

FRS SoC Evaluation Design

Specification 30 (59) Version 1.5

There are a couple of ways to generate device tree for a system. It can be written from
scratch, device tree from Linux kernel can be used as basis, or Altera SoC EDS device tree
generator utility sopc2dts can be used, at least as a starting point. Device tree from Linux

kernel was used as basis with the FRS SoC SW Evaluation Design. It was modified slightly to
match the QSYS settings, then FES and FRTC IP related parts were added.

Device tree bindings of Flexibilis drivers are described together with each driver in the
following sections. Complete device trees for supported boards are available in the download
package.

4.2.3 flx_frs (FES)

Flx_frs is a driver for FES and XRS RS. Flexibilis Ethernet Switch (FES) and Flexibilis
Redundant Switch (FRS) were combined into same FES IP block. Available IP features must
be described for the driver in device tree.

Driver creates a Linux net device for each switch port. Net devices of the external ports are
attached to PHY devices, if so configured. This allows existing Linux PHY drivers to be used
for link mode monitoring in order to keep FES registers synchronized with current link mode.
Link mode can be managed through ETHTOOL ioctl. Driver provides also its own ioctl
interface to user space for accessing FES features. Many examples in this chapter use
flx_frs_tool which is built on flx_fes_lib APIs.

4.2.3.1 Device Tree Bindings

Driver needs information about each switch and switch port in device tree to function
correctly. Network interface names are defined in device tree. By convention CPU ports are
named SE01, SE02, and so on while external ports are named CE01, CE02, CE03 and so on,
although any valid names can be used.

FES definitions for the FRS SoC evaluation board are shown in Listing 2.

FRS SoC Evaluation Design

Specification 31 (59) Version 1.5

 fes@ff300000 {

 #address-cells = <1>;

 #size-cells = <1>;

 compatible = "flx,fes";

 /* Switch registers */

 reg = <0xff300000 0x8000>;

 /* FPGA interrupts start from 72 (-32 for .dts) */

 interrupts = <0 43 0x4>;

 mac_name = "eth0";

 ptp-clock = <&frtc0>;

 if_name = "SE01";

 features {

 clock-frequency = <125000000>;

 device-id;

 gigabit;

 statistics-counters;

 mac-address-table;

 vlan;

 traffic-shaper;

 priority-queues = <8>;

 traffic-policers = <128>;

 static-mac-address-table-rows = <128>;

 hsr-ports = <0x0e>;

 prp-ports = <0x0e>;

 cut-through-ports = <0x06>;

 };

 port0 {

 if_name = "SE01";

 medium_type = <5>;

 cpu-port;

 /* port and port adapter registers */

 reg = <0xff310000 0x10000>;

 };

 port1 {

 if_name = "CE01";

 medium_type = <1>;

 reg = <0xff320000 0x10000 0xff360200 0x200>;

 phy-handle = <&phy1>;

 phy-mode = "rgmii-id";

 };

 port2 {

 if_name = "CE02";

 medium_type = <1>;

 reg = <0xff330000 0x10000 0xff360400 0x200>;

 phy-handle = <&phy2>;

 phy-mode = "rgmii-id";

 };

 port3 {

 if_name = "CE03";

 medium_type = <1>;

 reg = <0xff340000 0x10000 0xff360600 0x200>;

 phy-handle = <&phy3>;

 phy-mode = "rgmii-id";

 };

 port4 {

 if_name = "CE04";

 medium_type = <1>;

 reg = <0xff350000 0x10000 0xff360800 0x200>;

 phy-handle = <&phy4>;

 phy-mode = "rgmii-id";

 };

 };

FRS SoC Evaluation Design

Specification 32 (59) Version 1.5

Listing 2. FES device tree definition

Switch device tree bindings are listed in the following.

compatible
Value should be “flx,fes” for FES IP.

reg
Address of FES switch registers and length in octets.

interrupts
Interrupt definition in format specific to the parent interrupt controller.

mac_name
Name of the Linux net device whose Ethernet MAC is connected to CPU port.

features
Enabled FES IP features are described in this node. Many of them can be taken
directly from FES Generics, see section 3.3.1, although often the setting is in device
tree in a slightly different form. Some of these features affect driver operation, some
are currently only informational but may have some effect in the future. Active
features can be checked from procfs file
/proc/driver/flx_frs/device<NN>_features or through ioctl interface

(4.2.3.3).

clock-frequency (integer)
Switch clock frequency in Hz. Software may use this for example when
calculating traffic control (policing and shaping) configurations for desired bit
rates.

device-id (boolean) [FES]
Switch IP contains device ID registers. Always valid for standard FES IP.

gigabit (boolean) [FES Generics]
Gigabit Ethernet is supported. Without this all ports are limited to 10/100 Mb/s
speeds.

statistics-counters (boolean)
Port statistics counters are available. Always valid for standard FES IP.

mac-address-table (boolean)
Switch MAC address table is accessible. Always valid for standard FES IP.

vlan (boolean)
Switch supports VLANs. Always valid for standard FES IP.

traffic-shaper (boolean) [FES Generics]
Traffic shapers are enabled for all ports.

priority-queues (integer) [FES Generics]
Defines number of output queues per port.

traffic-policers (integer) [FES Generics]
Defines number of traffic policers per port. Missing or zero value disables
policer support.

static-mac-address-table-rows (integer) [FES Generics]
Defines number of rows in static MAC address table. Missing or zero value
disables static MAC address table support.

hsr-ports (integer) [FES Generics]
Defines switch ports that support HSR. Value is a bit mask of port numbers.

prp-ports (integer) [FES Generics]
Defines switch ports that support PRP. Value is a bit mask of port numbers.

FRS SoC Evaluation Design

Specification 33 (59) Version 1.5

macsec-ports (integer) [FES Generics]
Defines switch ports that support MACsec. Value is a bit mask of port
numbers. Missing or zero value disables MACsec support.

port<N>
FES port definitions for port <N>.

Port device tree bindings are:

if_name
Linux net device name for the port. Driver creates new net device for each port using
this name.

medium_type
Type of the medium used with this port. This affects how the driver deals with the
port. Possible values are:

0 NONE, port is not used
1 SFP, port connected to SFP (fiber or copper) and may have a PHY
2 PHY, port hard-wired to a PHY
5 NO PHY, there is no PHY, speed can be changed at runtime

Parameters phy-handle and phy-mode must be used with SFP and PHY medium
types for the FES driver to be able to attach the Linux PHY device to the FES port net
device. Parameter sfp-phy-handle can be used with SFP medium type to define
access to PHY within copper SFP module. Parameter sfp-eeprom can be used with
SFP medium type to detect SFP type from SFP EEPROM contents.

cpu-port
Indicates a port connected to CPU.

interlink-port
Indicates a port connected to another FES. This is used for example when building a
QuadBox using a design with one CPU port and two interconnected switches.

auto-speed-select
Configure FES port to select speed from external signals or configure XRS RS port to
select speed automatically.

reg
Address of port registers and length in octets, optionally followed by address of port
adapter registers and length in octets. Note that adapter registers should be defined if
port is connected to any of the adapters specified in section 3.4 for the link to work
correctly.

phy-handle
Link to PHY device which is defined somewhere else in the device tree. This is
required for ports with medium type PHY and optional for ports with medium type
SFP. If this is left out, FES driver assumes there is no PHY.

Copper SFP modules may have a PHY, too. Parameter sfp-phy-handle should be
used for them instead of phy-handle.

For medium type SFP both phy-handle and sfp-phy-handle can be specified, when
there is a separate PHY in addition to SFP PHY for a port. This may be necessary for
example to put both PHYs in correct mode.

phy-mode
PHY interface mode to use with the Linux PHY driver framework. This is required
when phy-handle is set. See Linux source file drivers/of/of_net.c for possible

values.

FRS SoC Evaluation Design

Specification 34 (59) Version 1.5

sfp-eeprom
Link to I2C slave device of SFP EEPROM defined somewhere else in the device tree.
If this is specified for ports which have medium_type value 1 (SFP), SFP module type
is detected from SFP EEPROM contents. This is needed with some designs for the
port to function correctly with different SFP modules.

sfp-phy-handle
Link to PHY device within copper SFP module. Copper SFP modules typically contain
a PHY device which is accessed via I2C.

For medium type SFP both phy-handle and sfp-phy-handle can be specified, when
there is a separate PHY in addition to SFP PHY for a port. This may be necessary for
example to put both PHYs in correct mode.

sgmii-phy-mode
If present, FES driver uses SGMII/1000Base-X port adapter in SGMII PHY mode
when its SGMII mode is selected. Otherwise the adapter is used in SGMII MAC
mode.

4.2.3.2 Principle of Operation

FES driver needs an Ethernet MAC device to work with. It catches all frames received by the
MAC using Linux net device API and handles them itself. Because of this the original MAC
network interface cannot be used for networking. So IP addresses and routes at OS level, for
example, are configured to use the FES CPU network interface (typically SE01) instead of the
original network interface.

All frames sent by OS to FES port network interfaces will be forwarded to the original MAC
driver for actual sending. Before that the driver adds management trailer to all frames.
Frames sent to FES CPU port network interface will get management trailer value zero, which
causes FES to choose where to forward the frame. Frames to other FES port network
interfaces (CExx) will get a management trailer with only the bit of that port set, causing the
frame to be sent only through that FES port. Thus the driver relies on FES management
trailer feature to work correctly.

All frames received from the MAC have the management trailer, too, which indicates the
receiving external FES port. Received frame handling in FES driver depends on interface
mode: normal or independent.

For normal external ports FES driver passes all frames to OS as coming from FES CPU port
network interface, with the exception of HSR/PRP supervision frames and PTP frames. They
are passed to OS as coming from the external FES port network interface so that the software
can detect the original port. Because of this the external FES port network interfaces cannot
be used for normal networking at OS level. But they can be used to link mode monitoring and
enforcing a certain link mode, to retrieve FES port statistics counters and to access FES port
registers.

When port is configured as an independent interface, FES driver passes all frames to OS as
coming from the external FES port network interface. Independent interfaces feature is
described in section 4.2.3.14.

When FES receives a PTP frame from CPU to the CPU port, it timestamps the frame and
captures the frame into FES registers and generates an interrupt. The driver detects this and
retrieves the original frame sent by software and its timestamp and passes the frame back
with the timestamp to OS as coming from the first PTP enabled port. The local PTP software
can detect that the frame was actually sent by itself and retrieve the PTP header information
and actual send time and do corrections based on the information available. This is used for
peer link delay measurement.

FRS SoC Evaluation Design

Specification 35 (59) Version 1.5

4.2.3.3 Accessing Switch Features

FES driver provides an ioctl interface for accessing switch features from application code.
See the driver header files for more information, files are listed in Table 3.

File Description

Flx_frs_iflib.h FES specific ioctl API definitions

Flx_frs_if.h FES register definitions

Table 3. FES driver API header files

The preferred method is to use the provided flx_fes_lib API rather than the ioctl directly. See
section 4.3.3. Note that software can also ask available switch features from the driver.

There is also a command line utility flx_frs_tool which supports most of the API features.

Use the following command to see its usage.

flx_frs_tool –h

Example commands to see available switch features:

cat /proc/driver/flx_frs/device00_features

flx_frs_tool -F SE01

4.2.3.4 Port Link Mode Management

Normal Linux ETHTOOL ioctl can be used to monitor and manage external FES port link
status and mode. There is also ethtool command available. Example command to get

CE01 port link status:

ethtool CE01

Example command to force CE01 to 1000 Mbit/s full-duplex mode:

ethtool -s CE01 autoneg off speed 1000 duplex full

Example command to enable autonegotiation on CE01:

ethtool -s CE01 autoneg on

4.2.3.5 Managing Port Forwarding Mode

Normally port is in disabled mode when the corresponding network interface is down or there
is no link, and in forwarding mode when link is also up. FES ports have also a third mode:
learning.

Driver ioctl can be used to control FES port forwarding mode. When set in non-automatic
mode, driver still keeps the port in disabled mode when network interface is down or there is
no link, and in specified mode when link is up. Normal behavior can be returned by setting
port back to automatic mode. This is useful for example in implementing rapid spanning tree
protocol (RSTP).

Command flx_frs_tool can be used to control the forwarding modes. Examples:

flx_frs_tool -f CE03 learning

flx_frs_tool -f CE03 auto

4.2.3.6 Accessing IPO Entries

Flx_fes_lib provides functions for accessing FES IPO rules, which can also be seen from
procfs file. Example command:

cat /proc/driver/flx_frs/device00_ipo_registers

FRS SoC Evaluation Design

Specification 36 (59) Version 1.5

4.2.3.7 Accessing Port Statistics Counters

All the statistics counters provided by FES ports are available through ETHTOOL ioctl as
Linux network interface specific statistics. FES statistics counters are often much more useful
than ordinary Linux net device statistics counters for diagnosing problems.

Example ethtool command to retrieve statistics counters from port CE01:

ethtool -S CE01

4.2.3.8 Accessing MAC Address Table

Driver ioctl interface can be used to read FES MAC address table and to clear MAC address
table entries of select ports.

Command flx_frs_tool can be used to read the switch MAC table. Example:

flx_frs_tool -m SE01

MAC address can also be read from a proc file, too. Example:

cat /proc/driver/flx_frs/device00_mac_table

Command flx_frs_tool can be used to clear switch MAC table entries of select ports.

Note that it is normally not recommended for redundant ports. Example:

flx_frs_tool -c CE03

4.2.3.9 Accessing Static MAC Address Table

Driver ioctl can be used for reading and writing FES static MAC address table (SMAC table)
entries. SMAC table can also be seen from procfs file and accessed using flx_fes_lib API.
Command flx_frs_tool can be used for testing.

Example command to list all enabled SMAC table entries:

flx_frs_tool -M SE01

Example command to list the whole SMAC table:

flx_frs_tool -M SE01 '*'

Example command to add an SMAC table entry for MAC address 72:c7:c6:13:51:be to
forward VLAN ID 5 frames to ports 1 and 2 using next unused column number:

flx_frs_tool -E SE01 72:c7:c6:13:51:be + 0x9000 0x6 0 0 5

Example command to remove all SMAC table entries for MAC address 96:0d:59:62:11:8a:

flx_frs_tool -R SE01 96:0d:59:62:11:8a

Example command to remove all SMAC table entries:

flx_frs_tool -R SE01 '*'

4.2.3.10 Traffic Shaping

Flx_fes_lib provides an API for managing FES traffic shaping feature. Command
flx_frs_tool -S can be used for testing the shaping feature. Example command to limit

interface CE01 output queue 0 to 50 Mb/s when switch clock frequency has been defined in
device tree:

flx_frs_tool -S CE01 0 50000000 -C 0

Example command to show traffic shaping of output queue0:

flx_frs_tool -S CE01 0 -C 125000000

Example command to stop shaping traffic in output queue 0:

FRS SoC Evaluation Design

Specification 37 (59) Version 1.5

flx_frs_tool -S CE01 0 2000000000 -C 0

4.2.3.11 Traffic Policing

Flx_fes_lib provides an API for managing FES traffic policing feature. Command
flx_frs_tool -P can be used for testing the policing feature. Example command to limit

interface CE01 policer 0 (default) to 120 Mb/s with limit 15360 B when switch clock frequency
has been defined in device tree:

flx_frs_tool -P CE01 0 120000000 15360 -C 0

Example command to show traffic policing of policer 0:

flx_frs_tool -P CE01 0 -C 0

Example command to stop policing traffic in policer 0:

flx_frs_tool -P CE01 0 2000000000 65535 -C 0

4.2.3.12 Configuring MACsec

Note: MACsec is not enabled in the reference design.

Flx_fes_lib provides an API for managing FES MACsec feature. Flx_frs_tool commands -I, -K
and -T can be used for testing MACsec feature. Note that driver requires CAP_NET_ADMIN
Linux capability for all accesses to port MACsec registers.

Example commands to write and read back Secure Channel Identifiers (SCI) of CE01. LSB of
the RX SCI is 0x00 and MSB is 0x77.

flx_frs_tool -I CE01 rx 7766554433221100

flx_frs_tool -I CE01 rx

flx_frs_tool -I CE01 tx fedcba9876543210

flx_frs_tool -I CE01 tx

Example commands to write and read back TX key 0 and RX key 0 of CE01. 128 bit keys are
used in this example, most significant bits of the full 256-bit keys will be set to zeros. LSB of
the RX key is 0x00 and MSB (of the 128-bit key) is 0xFF.

flx_frs_tool -K CE01 rx 0 ffeeddccbbaa99887766554433221100

flx_frs_tool -K CE01 rx 0

flx_frs_tool -K CE01 tx 0 fedcba9876543210fedcba9876543210

flx_frs_tool -K CE01 tx 0

Example command to enable MACsec on CE01 using TX key 0 so that SC bit is set, i.e. SCI
will be included in SecTAG. Both RX and TX security association (SA) 0 packet number (PN)
counters are also reset.

flx_frs_tool -T CE01 enable 0 0x1 0x1

Example commands to write TX key 1 and to switch to using it. Also SC bit is set and SA 1 TX
packet number counters are reset.

flx_frs_tool -K CE01 tx 1 fffeeedddcccbbbaaa99977766655544

flx_frs_tool -T CE01 enable 1 0x1 0

Example command to disable MACsec on CE01 retaining packet number counter values:

flx_frs_tool -T CE01 disable 0 0 0

4.2.3.13 Auxiliary Network Interfaces

Management trailers can be used to send frames from only select switch ports. Driver
automatically creates a network interface for each port, as described in section 4.2.3.2.
Additional, so called auxiliary network interfaces can be created for other uses. Multiple ports
can be added to each auxiliary network interface, which allows sending frames to all those
ports at the same time.

FRS SoC Evaluation Design

Specification 38 (59) Version 1.5

Auxiliary network interfaces are used with XR7 PTP to support PTP boundary clock feature,
and some other PTP usage scenarios.

Auxiliary network interfaces can be managed using the flx_frs_tool command. Example

commands to create a new net device OC01 and add ports CE01 and CE02 to it:

flx_frs_tool -A SE01 OC01

flx_frs_tool -a OC01 CE01

flx_frs_tool -a OC01 CE02

Example command to list FES ports of auxiliary network interface OC01:

flx_frs_tool -l OC01

Example command to remove auxiliary network interface OC01:

flx_frs_tool -D OC01

4.2.3.14 Independent Interfaces

As FES is basically an Ethernet switch, it forwards traffic between its ports. However it is
possible to configure switch so that some of its ports appear as independent network
interfaces, just like an interface of a regular Ethernet network interface card. Driver supports
this use case by allowing ports to be defined as being independent interfaces.

Module parameter ifacemodes can be set to a bitmask, where each bit corresponds to an

FES port. Ports whose bit is set are treated as independent interfaces. Net devices of those
external ports can then be used as if they were ordinary network interfaces. Normally a
different MAC address should be set for such net devices. Command ip can be used for

that when net device is down:

ip link set dev CExx address XX:XX:XX:XX:XX:XX

In case of multiple FES instances ifacemodes parameter can be set to a comma separated

list of bitmask values, one for each FES instance.

Note that the implementation uses switch features like port forward mask, IPO rules and
management trailers.

4.2.4 flx_frtc (FRTC)

Flx_frtc is a driver for both FRTC (Flexibilis Real-Time Clock) and XRS RTC. When access to
FRTC is needed from software, the device must be defined in device tree. Device tree
definition is shown in Listing 3. FRTC driver is used from user space through the interface
driver flx_time.

Listing 3. FRTC device tree definition

Device tree bindings for FRTC are listed below.

reg
Address of FRTC registers and length in octets.

step-size
NCO step size as two numbers: nanoseconds and subnanoseconds.
Subnanoseconds is a 32-bit number, each second is divided to 232 subnanoseconds.

See FRTC user manual [8] for details.

frtc@c8100000 {

 compatible = "flx,frtc";

 reg = <0xff370000 0x10000>;

/* Step size in nanoseconds and subnanoseconds */

 step-size = <8 0>;

};

FRS SoC Evaluation Design

Specification 39 (59) Version 1.5

4.2.5 flx_time

Flx_time driver provides a common user space interface for all Flexibilis time related IPs and
blocks, each of which has its own driver. The drivers provides character device
/dev/flx_time0.

Driver does not have device tree bindings.

4.2.6 flx_pio (Altera PIO)

Flx_pio is a small driver providing Linux GPIO interface to Altera PIO components.

PIO device tree configuration for one PIO block is shown in Listing 4. If GPIO direction is
fixed, that should be told to the driver by setting direction to correct bitmask, zero for input

and one for output.

Listing 4. PIO to GPIO definition in device tree

Custom designs may choose a different way to access PHYs, or may lack PHYs entirely. In
such cases this may not be needed at all. On the other hand this could be used to turn PIO
into Linux GPIO for other purposes.

4.2.7 flx_eth_mdio (Altera MDIO Core)

Flx_eth_mdio is a small MDIO bus driver for Altera MDIO Core components. It is used with
FRS SoC Evaluation board to access Ethernet PHYs connected to FPGA. Device tree
definition is shown in Listing 5.

/* PIO for FPGA PHY reset */

pio0: gpio@ff240400 {

 #gpio-cells = <2>;

 compatible = "flx,pio";

 reg = <0xff240400 0x20>;

 gpio-controller;

 width = <1>;

 direction = <0x1>;

};

FRS SoC Evaluation Design

Specification 40 (59) Version 1.5

Listing 5. MDIO bus definition in device tree

4.2.8 i2c_gpio

This is the standard Linux i2c-gpio driver to turn two Linux GPIO signals to an I2C bus. on
FRS SoC Evaluation Design SFP EEPROM and SFP PHY devices are accessed using this
driver.

4.2.9 stmmac (EMAC)

The SW Evaluation Design makes use of also other Linux drivers. Driver stmmac
(CONFIG_STMMAC_ETH) is one of them. It creates a Linux net device for each Ethernet
MAC. In this Evaluation Design EMAC is connected to FES CPU port.

EMAC settings in Qsys affect how the Ethernet interfaces need to be represented in device
tree. Listing 6 shows definitions for FRS SoC evaluation board.

The phy-mode definition is used to tell EMAC driver how PHY is connected to the EMAC.

The fixed-link definition is used to tell EMAC driver that there is no real PHY, and to set the
EMAC speed. It is used when EMAC is connected to an FES port. It causes a virtual PHY
device with given PHY address to appear in virtual MDIO bus called "fixed-0" and to associate
the EMAC net device with that PHY device. This requires the fixed-link driver
(CONFIG_FIXED_PHY).

 /* MDIO bus for FES port PHY */

 eth_mdio@ff212000 {

 #address-cells = <1>;

 #size-cells = <0>;

 compatible = "flx,eth-mdio";

 reg = <0xff212000 0x100>;

 phy1: phy@0 {

 compatible = "ethernet-phy-ieee802.3-c22";

 reg = <0x0>;

 };

 phy2: phy@1 {

 compatible = "ethernet-phy-ieee802.3-c22";

 reg = <0x1>;

 };

 phy3: phy@2 {

 compatible = "ethernet-phy-ieee802.3-c22";

 reg = <0x2>;

 };

 phy4: phy@3 {

 compatible = "ethernet-phy-ieee802.3-c22";

 reg = <0x3>;

 };

 };

FRS SoC Evaluation Design

Specification 41 (59) Version 1.5

Listing 6. Ethernet interface definitions

In custom designs the EMACs could be used differently and the device tree configuration
would have to be adapted accordingly. For example, one might decide to use the other
EMAC, so the other Ethernet interface definition would be added to device tree.

4.2.10 Marvell (PHY)

The SW Evaluation Design makes use of also other Linux drivers. Driver marvell
(CONFIG_MARVELL_PHY) is one of them. It is a Linux PHY driver for Marvell 88E1111
PHYs present in most copper SFP modules.

4.3 User Space

The core user space environment consists of system programs, utilities and libraries from
Debian GNU/Linux distribution [12]. Additional software from Flexibilis provides support for
the features of FRS SoC Evaluation Design and its FES device. Those are described in the
following.

4.3.1 XR7 PTP

XR7 PTP implements Precision Time Protocol. It is described in detail in XR7 PTP Design
Specification [4]. XR7 PTP is modular software and uses dynamically linked shared object
libraries on GNU/Linux systems. The following PTP modules are used in XRS Reference
Software.

xr7ptp
This is the main program (daemon) which includes the XR7 PTP library, i.e. the main
functionality of the PTP stack.

os_if
This library implements the OS interface on GNU/Linux for XR7 PTP library.

flx_frtc_clock_if
This library implements the Clock interface for the XR7 PTP library and uses FRTC
as local clock. Thus when local device is a PTP slave, this library keeps local FRTC
time synchronized with the PTP master clock. It also enables certain features of FES.
Flx_time driver user space API (ioctl) is used to access the FRTC and library
flx_fes_lib is used to access the FES.

flx_packet_if
This library implements the Packet interface for the XR7 PTP library and uses FES
timestamping features. Library flx_fes_lib is used to access FES.

/* EMAC0, eth0 in Linux, connected to FES port 0 on FPGA */

&gmac0 {

 phy-mode = "gmii";

 status = "okay";

 fixed-link {

 speed = <100>;

 full-duplex;

 };

 /*

 * MDIO bus is not really used, but keep it

 * to avoid driver scanning the whole bus.

 */

};

FRS SoC Evaluation Design

Specification 42 (59) Version 1.5

netconf (XR7 FCM “sync” module)
This library provides NETCONF interface to the PTP stack. It uses the Control and
Configuration interfaces of the XR7 PTP library and implements XR7 FCM module
API. FCM support for XR7 PTP is an optional component and requires XR7 FCM, see
chapter 4.3.4.1 for more information.

host_clock_adj
This is a separate daemon which keeps the OS (Linux) clock synchronized to FRTC
time.

4.3.2 XR7 Redundancy Supervision

XR7 Redundancy Supervision implements HSR/PRP Supervision protocol. It is described in
detail in XR7 Redundancy Supervision Design Specification [5]. It is modular software and
uses dynamically linked shared object libraries on GNU/Linux systems. Here is summary of
the supervision modules used in FRS SoC SW Evaluation Design.

xr7_redundancy_supervision
This is the main program (control daemon).

supervision_lib
Supervision library implements the HSR/PRP Supervision protocol.

packet_lib
Packet library provides access to the Linux network stack and interfaces. It uses
library lfx_fes_lib to access FES.

netconf (XR7 FCM “redundancy_supervision” module)
This library provides NETCONF interface to redundancy supervision. NETCONF is an
optional feature and requires the XR7 FCM module, see chapter 4.3.4.1 for more
information.

4.3.3 flx_fes_lib

The library contains helper functions for managing FES. The source code files are listed in
Table 4.

File Description

flx_fes.h
flx_fes.c

Helper functions for configuring FES IP [7]. Includes for example
reading and writing of FES registers and IPO settings.

flx_fes_rstp.h
flx_fes_rstp.c

Helper functions for implementing RSTP.

flx_fes_aux.h
flx_fes_aux.c

Functions for managing FES auxiliary network interfaces.

flx_fes_tc.h
flx_fes_tc.c

Functions for managing FES traffic control (policing and shaping)
features.

flx_fes_macsec.h
flx_fes_macsec.c

Functions for managing FES MACsec features.

Table 4. flx_fes_lib files

4.3.4 XR7 Management Software

XR7 Management Software provides a web interface and an XML based protocol for
configuring devices and examining their status. It consists of three parts which are briefly
described in the following.

More information is available from Flexibilis, please send E-mail to contact@flexibilis.com.

4.3.4.1 XR7 FCM

XR7 FCM stands for Flexibilis Configuration Manager. It is an implementation of IETF
NETCONF [11] network management protocol. FCM design is modular. The daemon itself
implements the protocol while FCM modules, implemented as dynamically linked shared

mailto:contact@flexibilis.com

FRS SoC Evaluation Design

Specification 43 (59) Version 1.5

object libraries, provide NETCONF support for specific system components like XR7 PTP,
XR7 Redundancy Supervision, network interfaces and so on.

FCM modules communicate with FCM using local sockets and can thus be integrated into
other daemons that actually handle the tasks related to the FCM module. For example FCM
module named sync implements time synchronization using XR7 PTP and runs in xr7ptp

daemon process.

4.3.4.2 XR7 IFM

XR7 Interface Manager (IFM) is a daemon which provides NETCONF support for various
network interfaces. Its design is modular, each module is implemented as a dynamically
linked shared object library with XR7 FCM module interface. The following modules are used
in the XRS Reference Software.

ethernet
This module provides Ethernet interface status and configuration for external Ethernet
interfaces CE01, CE02, CE03 and CE04. For example link speed and mode can be
changed or current auto-negotiation status can be retrieved. It also provides FES port
statistic counters.

vlan
This module provides VLAN configuration support for FES.

ip
This module provides IP address configuration for the system. Note that the FES
CPU port net interface is used for normal networking, so the IP address is set to that
Linux network interface.

routing
This module provides static routing configuration for the system.

4.3.4.3 XR7 GUI

XR7 GUI provides web interface to the device for presenting status information and for
configuring the system as desired by user. It is implemented as a Java servlet and uses
NETCONF to access device resources.

In FRS SoC SW Evaluation Design Apache Tomcat is used as the web server and servlet
engine. User can access the GUI from address https://192.168.7.1/ (when default IP address
is configured).

4.3.5 SSH Server

OpenSSH server is used. SSH subsystem name netconf is configured to use fcm_manager

so that NETCONF requests over SSH are forwarded to FCM.

4.3.6 Debian

FRS SoC SW Evaluation Design is built on Debian [12] GNU/Linux distribution.

Most of the software from Flexibilis do not require any specific GNU/Linux distribution, and
many can be used in other operating systems than Linux.

4.4 Compilation

Each software module in FRS SoC Evaluation Design is built from sources separately.

4.4.1 Toolchains

A bare-metal cross-compiler toolchain is needed for building the bootloaders. One is included
with Altera SoC EDS and it is used in the SW Evaluation Design from Embedded Shell.

https://192.168.7.1/

FRS SoC Evaluation Design

Specification 44 (59) Version 1.5

Another cross-compiler toolchain is needed to build the Linux kernel, drivers and user space
software. There are a couple of alternatives available, including but not limited to:

- One from ARM Development Studio 5 provided with Altera SoC EDS
- Linaro GCC
- Mentor Graphics Sourcery CodeBench
- GCC from Emdebian [13]
- Building own toolchain

GCC for ARM GNU/Linux from Emdebian is used with the SW Evaluation Design.

Device tree compiler is needed to turn device tree from source form to binary form or vice
versa. It is available in the Linux kernel source tree at scripts/dtc/. Many GNU/Linux

distributions also package the dtc utility, on systems based on Debian it is available from

package device-tree-compiler.

Preparing an SD-card or SD-card image requires various GNU/Linux tools. Following is a
non-complete list of some of the non-POSIX.1 tools that are used with the SW Evaluation
Design:

- GNU parted
- kpartx
- mkfs.ext4
- tune2fs
- mount
- umount

Additionally following tools are used with the SW Evaluation Design to collect files needed on
SD-card to a separate directory before putting them in SD-card image:

- debootstrap
- qemu-arm-static
- apt-get and other related Debian package management tools

Custom designs may naturally choose a different way and different tools for boot image
generation related phases.

4.4.2 Preloader and U-Boot

Preloader and U-Boot are built according to Altera SoC EDS instructions within its embedded
shell. They can be built at the same time. Note that Qsys and Quartus II settings can affect
the resulting Preloader binary. Sample Preloader and U-Boot build commands are shown in
Listing 7. Names of the resulting files are preloader-mkpimage.bin and u-boot.img.

See Figure 12 for directory structure.

FRS SoC Evaluation Design

Specification 45 (59) Version 1.5

Listing 7. Preloader and U-Boot generation

See Table 5 for placement of Preloader and U-Boot binaries on the SD-card. Example
command to install custom built Preloader from a GNU/Linux system to the SD-card:

sudo dd if=preloader-mkpimage.bin of=/dev/sdX2 bs=64k

Example command to install custom built U-Boot to the SD-card:

sudo dd if=u-boot.img of=/dev/sdX2 bs=64k seek=4

Above commands assume that SD-card is available as block device /dev/sdX. The same

commands can be used to install the Preloader and U-Boot to an SD-card image by replacing
the of parameter value with corresponding device from device mapper.

4.4.3 Linux Kernel

Linux kernel source code is available from a Git repository. Altera SoC EDS provides a script
to download and set it up. See also the README file provided with the FRS SoC Evaluation
Design.

The patch for EMAC to FPGA connection provided with FRS SoC Evaluation Design must be
applied. Provided Linux kernel configuration must also be used. Detailed build instructions are
provided with the FRS SoC Evaluation Design release.

In order to install custom built Linux kernel to the SD-card just copy the resulting uImage file

to the first SD-card partition using a GNU/Linux system. See Table 5 for details.

4.4.4 Linux Drivers for Flexibilis IPs

Linux driver source code is available with the FRS SoC Evaluation Design release. Drivers
are built against configured Linux kernel source tree. Example build commands:

OPTS="ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- KDIR=<KERNEL_DIR>"

make $OPTS -C flx_time

make $OPTS -C flx_frtc

make $OPTS -C flx_frs

make $OPTS -C flx_pio

Replace <KERNEL_DIR> with a path to the configured Linux kernel source tree.

Prepare to rebuild.

mkdir -p cyclone5soc_eval/fpga/bin_qsys/bsp

cd cyclone5soc_eval/fpga/bin_qsys/bsp

rm -rf *

bsp-create-settings \

 --settings settings.bsp \

 --type spl \

 --preloader-settings-dir \

 ../hps_isw_handoff/soc_system_hps_0/ \

 --bsp-dir .

Target all builds Preloader and target uboot builds U-Boot.

make all uboot

Take final U-Boot binary from intermediate directory.

cp uboot-socfpga/u-boot.img .

FRS SoC Evaluation Design

Specification 46 (59) Version 1.5

4.4.5 Device Tree

Device tree is compiled from source form (.dts) to binary form (.dtb) using device tree
compiler dtc. The following command turns source file socfpga.dts to binary file

socfpga.dtb:

dtc -I dts -O dtb -o socfpga.dtb socfpga.dts

The following command tuns a binary file socfpga.dtb to source file socfpga.dts, but note that
some constructs may appear differently than in the original source file:

dtc -I dtb -O dts -o socfpga.dts socfpga.dtb

4.4.6 Other Flexibilis Software

Each Flexibilis product is delivered as a separate release package with detailed build
instructions. Please follow them to build the software.

Note that a license is required from Flexibilis for the source code of Flexibilis products.

4.4.7 Third Party Software

FRS SoC SW Evaluation Design SD-card image contains software from Debian GNU/Linux
distribution. The SW Evaluation Design is provided for FES evaluation purposes and for that
there is no need to rebuild all the software.

The following core Flexibilis software in the FRS SoC SW Evaluation Design do not require
any specific third party libraries or other third party software, other than a toolchain for
building and a C-library for user space parts:

- Linux drivers for FES and FRTC
- XR7 PTP without FCMD support
- XR7 Redundancy Supervision without FCMD support
- flx_fes_lib

Information about other Flexibilis software is available from Flexibilis, please send E-mail to
contact@flexibilis.com.

4.5 SD-Card

FRS SoC SW Evaluation Design is booted from SD-card. Structure of the SD-card is show in
Table 5. Ext4 filesystem is chosen for partition 1 because U-Boot supports it and ext4
filesystem supports POSIX.1 file access permissions, unlike FAT filesystems. It works better
with Debian package management. Additionally, ext4 filesystem is more immune to situations
like abrupt power loss, than for example ext2. However not all ext4 features can be used
because they are not supported or do not work reliably in U-Boot.

Partition Type Filesystem Contents

- - - MBR at offset 0x0 from start of SD-card
U-Boot environment at offset 0x200 from start of SD-card

1 0x83 ext4 soc_system.rbf FPGA binary
socfpga.dtb Linux device tree
uImage Linux kernel

2 0xA2 - Preloader at offset 0x0
U-Boot at offset 0x40000

3 0x83 ext4 Root filesystem

Table 5. SD-card structure

Sample GNU/Linux commands to create an SD-card image file with partitions are shown in
Listing 8. GNU parted is used to create the partition table. Unfortunately it does not support
custom partition types, so partition 2 type is changed separately. The script uses sectors (of
size 512 bytes) as units so that partition start addresses and sizes can be guaranteed for
desired alignment (here 4 MiB). Proper alignment is good for flash memory endurance and

mailto:contact@flexibilis.com

FRS SoC Evaluation Design

Specification 47 (59) Version 1.5

performance.

Listing 8. Script for creating partitions on SD-card image

Filesystem creation and mounting for populating is shown in Listing 9.

Create sparse SD-card image file socfpga.raw of size 512 MiB.

image="socfpga.raw"

dd of="$image" bs=$((1*1024*1024)) count=0 seek=512

Create MBR and partitions with 4 MiB alignment.

parted -s "$image" \

 mklabel msdos \

 mkpart primary ext4 8192s 139263s \

 mkpart primary ext4 139264s 147455s \

 mkpart primary ext4 147456s 786431s \

 quit

Change partition 2 ID to 0xA2.

partition=2

type=0xA2

printf '\'$(echo "obase=8 ; $(($type))" | bc) |

dd of="$image" conv=notrunc \

bs=1 seek=$((0x1BE + 16*($partition – 1) + 4)) count=1

FRS SoC Evaluation Design

Specification 48 (59) Version 1.5

Listing 9. Script for creating filesystems on SD-card image

Use device mapper to create block devices for partitions

on image file.

devs=`kpartx -a -v "$image" |

awk '/^add map .*p[0-9]+/ { print $3 }'`

part1=/dev/mapper/`echo "$devs" | sed -n 1p`

part2=/dev/mapper/`echo "$devs" | sed -n 2p`

part3=/dev/mapper/`echo "$devs" | sed -n 3p`

Create filesystem on partition 1.

mkfs.ext4 -q -L boot -O ^huge_file,^extent "$part1"

Make it more tolerant for power losses.

tune2fs -o journal_data "$part1"

Create filesystem on partition 3.

mkfs.ext4 -q -L rootfs –O ^huge_file "$part3"

Make it more tolerant for power losses.

tune2fs -o journal_data "$part3"

Mount root and boot filesystems on $MNT.

MNT="$PWD/tmp"

mount -o noatime,data=writeback,journal_async_commit \

 "$part3" "$MNT"

mkdir "$MNT/boot"

mount -o noatime "$part1" "$MNT/boot"

Populate filesystems here.

...

Unmount filesystems.

umount "$MNT/boot"

umount "$MNT"

Remove partitions from device mapper.

kpartx –d "$image"

FRS SoC Evaluation Design

Specification 49 (59) Version 1.5

5 Customization

Evaluation design can be modified in various ways to either evaluation or test different
designs, or to create own designs. This chapter explains how to make some changes.

5.1 Changing FES CPU Port Speed

The following must be set correctly to connect SoC EMAC to FES CPU port successfully:

- EMAC PHY interface
- EMAC link mode (speed and duplex)
- FES port mode (GMII vs. MII) and speed

EMAC PHY interface in SoC HPS system manager EMAC group control register is
determined from EMAC device tree phy-mode parameter. The register has three choices:

- GMII/MII
- RGMII
- RMII

The EMAC connected to FES CPU port normally must be set to GMII/MII mode.

EMAC link mode (speed and duplex) is set by the EMAC driver according to what PHY
reports as active link mode. Because there is no PHY, the fixed-link PHY driver is used for the
purpose. To set the speed, a fixed-link device tree parameter must be set correctly. See
Listing 6.

FES port link mode must also be set in FES CPU port PORT_STATE register. The (virtual)
PHY device reports the link mode to the EMAC driver, but not to the FES CPU port driver.
FES CPU port link mode can be set after FES driver is loaded by ETHTOOL ioctl, for example
using ethtool command from an init script. Example:

ethtool -s SE01 autoneg off speed 100 duplex full

5.2 Changing PHY address

EMAC and SFP module PHY addresses are configured in device tree. EMAC PHY address is
set in the EMAC device node. FES port PHY address is configured in the PHY device node,
which is referenced to from FES port node. For example if FES port PHY is connected to a
different MDIO bus, a PHY device node needs to be added to the host device of the MDIO
bus. Then that PHY device is referenced from the FES port node phy-handle parameter and
also phy-mode is set to correct PHY interface mode.

SFP modules seem to have a fixed I2C slave address to PHY address mapping.

5.3 FES Port without a PHY

Use correct FES port adapter in the FPGA design. If FPGA rebuild is necessary, update the
following:

- .rbf file to SD-card
- Rebuild Preloader and U-Boot and write to SD-card 0xA2 partition
- FES port adapter register address in device tree
- FES port medium type value in device tree
- If necessary, use ethtool command to set the speed correctly, example:

ethtool -s CE01 autoneg off speed 1000 duplex full

5.4 Adding an FES Port

Do the following:

- Update FPGA design, use correct adapter

FRS SoC Evaluation Design

Specification 50 (59) Version 1.5

- Set and note new FES port and adapter register addresses in Qsys
- Regenerate Qsys
- Recompile the design
- Rebuild Preloader and U-Boot
- Update BSP device tree

o Add new node for the new port
o Add pio and i2c nodes with correct content for the new port if necessary

- Convert device tree from source form (.dts) to binary form (.dtb)
- Update the following to already created SD-card

o New FPGA .rbf file to partition 1
o Device tree binary file to partition 1
o Preloader and U-Boot to SD-card 0xA2 partition
o Add new FES port to boot time configuration, for example to FCM Ethernet

module and FCM sync module factory and startup configurations

5.5 Change AXI Bus Type

FPGA blocks on Altera SoC FPGA can be connected either to the lightweight AXI bus or
normal AXI bus. HPS sees the buses at different addresses. Base address of the normal AXI
bus is 0xC0000000 and base address of the lightweight AXI bus is 0xFF200000. Also note
that the size of the lightweight AXI bus address range is much smaller.

Do the following to change the AXI bus type:

- Update FPGA design
- Set and note new register addresses in Qsys
- Regenerate Qsys
- Recompile the design
- Rebuild Preloader and U-Boot
- Update all FES switch, FES port, FES port adapter, FRTC and PIO registers in device

tree
- Convert device tree from source form (.dts) to binary form (.dtb)
- Update the following to already created SD-card

o New FPGA .rbf file to partition 1
o Device tree binary file to partition 1
o Preloader and U-Boot to SD-card 0xA2 partition

FRS SoC Evaluation Design

Specification 51 (59) Version 1.5

6 Troubleshooting

This chapter describes various methods to verify and debug FES designs. These instructions
and tips are generally valid also for custom FES designs, however the following is assumed:

- There is some HW which includes an FES design
- Linux is used
- Drivers from Flexibilis are used for FES and FRTC
- Device tree for design contains adapted FES and FRTC information
- System is bootable to Linux
- Console is available, either serial console or over network, for example using SSH
- proc filesystem is mounted in /proc
- At least the following common GNU/Linux utilities are available:

o cat, ls, find, grep
o depmod, insmod, modprobe, lsmod
o dmesg
o ip
o ethtool

If all the ports of the FRS SoC Evaluation board stop working, it’s likely that the evaluation
time limit has expired. The only possible fix for this is power recycle.

6.1 Driver Loading

Typically Flexibilis drivers are built as kernel modules, although it is possible to build them
also directly into the Linux kernel.

Use lsmod command to see list of loaded kernel modules.

6.1.1 Letting Drivers Load Automatically

Often kernel modules are placed under /lib/modules/<VERSION> where <VERSION> is

the Linux kernel version number, for example 3.10.31-ltsi. Then drivers can be loaded

automatically, which requires that depmod command has been used to update module

dependencies. If necessary, run depmod and reboot.

In some cases it may be necessary to use modprobe command to load the drivers.

With some HW and FPGA designs the drivers may have to be loaded in specific order. In that
case it is recommended to load drivers explicitly as described in the following section.

6.1.2 Loading Drivers Explicitly

If drivers are placed elsewhere than under /lib/modules/<VERSION>, then insmod

command must be used the load the drivers. Typically this is done from an init script at
system boot time, when drivers have to be loaded in specific order or at specific time. This
may also be useful when the set of drivers that needs to be loaded may change between
boots.

6.1.3 Driver Load Verification

Flexibilis drivers typically output something to kernel ring buffer (dmesg log), when drivers are
bound to devices. Use dmesg command after loading the drivers to see them. Remember that

usually not everything output to kernel ring buffer is output to console, so it is better to the use
the dmesg command than to rely on boot time prints on console.

Examples of such prints are:

flx-pio ff240000.gpio: Added PIO device ff240000.gpio GPIOs 254 ..

255

flx-pio ff240100.gpio: Added PIO device ff240100.gpio GPIOs 252 ..

253

FRS SoC Evaluation Design

Specification 52 (59) Version 1.5

flx-pio ff240200.gpio: Added PIO device ff240200.gpio GPIOs 250 ..

251

flx-pio ff240300.gpio: Added PIO device ff240300.gpio GPIOs 248 ..

249

FLX_TIME: Register NCO component(s).

FLX_TIME: probe for device ff370000.frtc.

flx_frs: Setup device 0 for memory mapped access

flx_frs ff300000.frs0: Device uses memory mapped access:

0xff300000/0x8000 -> c0990000

flx_frs ff300000.frs0: Port 0 uses memory mapped access:

0xff310000/0x10000 -> c0ae0000

flx_frs ff300000.frs0: Port 0 adapter uses memory mapped access:

0xff360000/0x200 -> c098e000

flx_frs ff300000.frs0: Port 1 uses memory mapped access:

0xff320000/0x10000 -> c0b00000

flx_frs ff300000.frs0: Port 1 adapter uses memory mapped access:

0xff360200/0x200 -> c099a200

flx_frs ff300000.frs0: Port 2 uses memory mapped access:

0xff330000/0x10000 -> c0b20000

flx_frs ff300000.frs0: Port 2 adapter uses memory mapped access:

0xff360400/0x200 -> c099c400

flx_frs ff300000.frs0: Port 3 uses memory mapped access:

0xff340000/0x10000 -> c0b40000

flx_frs ff300000.frs0: Port 3 adapter uses memory mapped access:

0xff360600/0x200 -> c099e600

flx_frs ff300000.frs0: Port 4 uses memory mapped access:

0xff350000/0x10000 -> c0b60000

flx_frs ff300000.frs0: Port 4 adapter uses memory mapped access:

0xff3f0600/0x200 -> c0ac6600

flx_frs ff300000.frs0: FRS IRQ 75 allocated

flx_frs ff300000.frs0: FRS SW reset done

FES and FRTC drivers also create files in /proc/driver for each device. Use find or ls

command to see the file names and cat command to see their contents. Example:

find /proc/driver

If there are no files even though driver is loaded, the driver is not bound to a device. This may
mean for example a problem with device tree contents or a problem with device initialization.

6.2 FES

FES specific troubleshooting and debug tips follow.

6.2.1 Missing Functionality

In case something seems to be missing verify that device tree contains correct set of features
and that feature parameters are correct inside the features node. See sections 4.2.3.1 and

4.2.3.3.

6.2.2 FES Switch Register Access

Use FES driver /proc files to verify that FES switch registers can be accessed correctly.

Compare for example ID and configuration ID values to FES manual or to a working system.
This could reveal for example a typo in device tree switch register address (FES instance reg

parameter value). This could also reveal for example bus access timing problems or bus byte
order problems in case of custom HW design. Example:

cat /proc/driver/flx_frs/device00_common_registers

FRS SoC Evaluation Design

Specification 53 (59) Version 1.5

Common Registers of device 0:

FRS ID0 (0x0000): 0x0000

FRS ID1 (0x0001): 0x4000

FRS configuration ID (0x0002): 6

…

6.2.3 FES Port Register Access

Use FES driver /proc files to verify that FES port registers can be accessed correctly. This

could reveal for example typos in device tree (FES port instance reg parameter value).

Example:

cat /proc/driver/flx_frs/device00_port_registers

Port registers of device 0 (REG): PORT0 PORT1 PORT2 PORT3 PORT4

State (0x0000): 0x0204 0x0120 0x0002 0x0002 0x0120

VLAN (0x0008): 0x8fff 0x8fff 0x8fff 0x8fff 0x8fff

…

6.2.4 FES Port Adapter Register Access

Some designs use FES port adapters to connect FES ports to other interface types. Use FES
driver /proc files to verify that FES port adapter registers can be accessed correctly and that

design contains correct adapters for each port. This could also reveal for example typos in
device tree (FES port instance reg parameter value). Example:

cat /proc/driver/flx_frs/device00_adapter_registers

Adapter registers of device 0

 (REG): PORT0 PORT1 PORT2 PORT3 PORT4

ID (0x0000): 0x0000 0x01b2 0x01b2 0x01b2 0x01b2

Type : - SGMII/1000 SGMII/1000 SGMII/1000 SGMII/1000

Link status (0x0001): 0x4000 0x0001 0x0000 0x0000 0x0001

…

Note that some adapters provide link status information in adapter registers, while others
expect current link status to be written to adapter registers. FES driver handles it
automatically for known and recognized adapter types when adapter register addresses have
been configured correctly.

Unrecognized or custom adapters may require use of separate drivers. In that case adapter
register addresses should not be defined for FES, unless FES driver is modified to handle
also those adapters.

6.2.5 FES Port Link Status and Speed for Copper Interfaces

Copper interfaces use an Ethernet PHY. Thus the Linux net device for such external ports, for
example CE01, should be attached to a Linux PHY device. This is configured in device tree
and indicated in the kernel ring buffer (dmesg log) with a line like this:

CE01: Attached PHY driver [Marvell 88E1111] (mii_bus:phy_addr=flx-

i2c-mdio-0:16)

If there is no such line, then there is likely a problem with accessing the PHY and the interface
may not work correctly in all situations. For example it may or may not work with
autonegotiation, but forcing a specific link speed would not be possible. At least not the
normal way.

Use ethtool command to check the link mode:

ethtool CE01

FRS SoC Evaluation Design

Specification 54 (59) Version 1.5

Settings for CE01:

 Supported ports: [TP MII]

 Supported link modes: 10baseT/Full

 100baseT/Full

 1000baseT/Full

 Supported pause frame use: No

 Supports auto-negotiation: Yes

 Advertised link modes: 10baseT/Full

 100baseT/Full

 1000baseT/Full

 Advertised pause frame use: No

 Advertised auto-negotiation: Yes

 Speed: 1000Mb/s

 Duplex: Full

 Port: MII

 PHYAD: 22

 Transceiver: external

 Auto-negotiation: on

 Supports Wake-on: d

 Wake-on: d

 Current message level: 0x00000007 (7)

 drv probe link

 Link detected: yes

Use FES driver /proc/driver/flx_frs/device<NN>_port_registers file to verify

that FES port is in correct state (GMII vs. MII and correct speed).

Use FES driver /proc/driver/flx_frs/device<NN>_adapter_registers file to

verify that FES port adapter, if such is used, is in correct state. See the adapter
documentation for meaning of register values. In some cases this may reveal problems with
the FPGA or HW design.

6.2.6 Use of Correct PHY Driver

Linux PHY framework detects the type of PHY from PHY ID registers (register numbers two
and three). It uses that information to decide which of the loaded PHY drivers to use to handle
the PHY device.

Many PHY devices can work with the generic PHY driver. But many PHY devices require a
specific driver to work correctly. This can also depend on the HW. It is possible that on some
HW design PHY can work with the generic PHY driver while on a different HW design a
specific PHY driver is needed, for example if HW design is such that certain PHY specific
register values must be changed from their default values.

FES driver shows the name of PHY driver used for an FES port in kernel ring buffer (dmesg
log). Example:

CE01: Attached PHY driver [Generic PHY] (mii_bus:phy_addr=flx-i2c-

mdio-0:16)

If the link does not work with the generic PHY driver, check if the Linux kernel contains a
specific PHY driver for your PHY. The PHY drivers are in drivers/net/phy directory in

kernel source tree. Enable the relevant PHY driver in kernel configuration and ensure the
module is loaded at boot time before FES driver, or build the PHY driver directly into Linux
kernel. Use dmesg command to see that the PHY driver really accepts the PHY.

In some cases a newer Linux kernel may contain a suitable PHY driver. In other cases it may
be necessary to write a new driver for the PHY.

FRS SoC Evaluation Design

Specification 55 (59) Version 1.5

6.2.7 FES Port Link Status and Speed for Fiber Interfaces

Fiber interfaces do not use an Ethernet PHY. For some adapter types FES driver can
configure the FES port speed and adapter correctly from available information, for example
using the adapter type whether configured PHY device was found or not. But in some cases
FES driver may have to be told which mode to use by ETHTOOL ioctl, see section 4.2.3.4.

6.2.8 SFP Module Change Detection

When FES port has been configured for medium type SFP, FES driver tries to detect when
SFP module is changed. This may not work in all cases, because Linux PHY framework is not
really designed to handle dynamically disappearing and appearing of PHY devices on an
MDIO bus.

Together with flx_i2c_mdio driver SFP module change detection works. If flx_i2c_mdio is
used with other drivers it may be necessary to disable this feature by this directive in device
tree for flx_i2c_mdio node:

 disable-change-detection;

6.2.9 Traffic Problems

First check that link is up and link status is correct in all places: from PHY driver, in FES port
state register, in FES port adapter registers, and also on the link partner side.

Then check FES port statistics counters. They are very useful in some cases to narrow down
the problem, because different counters for good and bad octets and for different types of
frames are available for each FES port and for both directions. This makes it possible to track
the flow of frames from source to destination through FES and back.

Use ethtool command to see the statistics counters. Example:

ethtool -S SE01

ethtool -S CE01

Example scenario: Communication is attempted from CPU with another device through FES.
Frames are sent from CPU through an EMAC connected to FES CPU port. Frames are
expected to be forwarded by FES from CPU port SE01 to external interface CE01 which is
directly connected to the destination device. The destination device is expected to send
responses back and it is expected that the responses travel the same path in the reverse
order.

First ensure that there are no daemons running on either side which could generate any extra
traffic and that FES and FES ports are in correct state. Then start to send frames from CPU.
Check that the OS actually tries to send packets to the EMAC which is connected to FES
CPU port. The transmit counters of both FES CPU port (SE01) and EMAC net device (for
example eth0) should increase without error counters increasing. Example:

cat /proc/net/dev ; sleep 1 ; cat /proc/net/dev

Then verify that FES CPU port RX counters increase (rx_good_octets):

ethtool -S SE01

Then verify that FES forwards the frames to CE01: tx_octets should increase.

ethtool -S CE01

Then verify that the destination device receives the frames.

If everything looks good, verify that the problem is not in the other direction. Verify that
destination device actually sends the responses back.

Then verify that the FES CE01 port receives the frames: rx_good_octets should increase.

ethtool -S CE01

FRS SoC Evaluation Design

Specification 56 (59) Version 1.5

Then verify that FES forwards the response frames to CPU port: tx_octets should increase:

ethtool -S SE01

Then verify that the frames are pass through the EMAC by checking FES CPU port net device
receive counters (this time SE01 only, as FES driver passes received frames always from its
own net devices to OS).

cat /proc/net/dev

If frames are sent by OS towards EMAC, but FES CPU port RX counter never increases, the
problem may be related to the EMAC.

If frames received to FES CPU port are not forwarded to other FES ports, or responses are
not forwarded from external ports to FES CPU port, the problem may be in FES IPO entries
or in FES VLAN configuration. Check also FES port forward mask register value.

If frames sent out from external FES port do not appear at the destination, there may be a
problem with the adapter connection or PHY or with the external device. It may also be useful
to test with other types of destination devices to rule out some HW interoperability problems.
PHY devices may also provide useful counters or status information. Also make sure the PHY
device is put in correct interface mode.

Check also FPGA design clocks and try with different link speeds.

Here’s a simple checklist:

- link status and mode (net device, adapter, link partner)
- statistics counters
- port modes (normal, HSR, PRP, interlink)
- IPO configuration
- VLAN configuration
- SMAC table
- traffic policing configuration
- traffic shaper configuration
- MACsec configuration
- FPGA design
- device tree correctness
- HW

6.2.9.1 RGMII

Remember that RGMII requires clock signal delay. Many PHYs support different internal
delay modes, which can be enabled using phy-mode parameter in device tree if the PHY

driver supports it. The relevant modes are: "rgmii-id", "rgmii", "rgmii-rxid" and

"rgmii-txid". In some cases some other method may have to be used to ensure clock

compatibility.

6.3 FRTC

A few checks for FRTC follow.

6.3.1 Checking FRTC Is Running

Use /proc/driver/flx_time/component_<NN>_registers file to see FRTC register

values. <NN> is flx_time index number of the clock, starting from 00. Example:

cat /proc/driver/flx_time/component_00_registers

Component index: 0

 name : Local NCO

 device id : 0x0090

 revision id : 0x02

FRS SoC Evaluation Design

Specification 57 (59) Version 1.5

 properties : 0x1f

 Time read:

 seconds : 137409

 nanoseconds : 434575818

 subnsecs : 0x0000

 clk cycle cnt: 0x00000f9f29d35bf1

 Register content:

 nco subnsec reg : 0x00000000

 nco nsec reg : 0x19e719ca

 nco sec reg : 0x0000000218c1

 nco cccnt reg : 0x0f9f29d35bf1

 nco step subnsec reg : 0x00000000

 nco step nsec reg : 0x08

 nco adj nsec reg : 0x1614ecf2

 nco adj sec reg : 0x000000000012

 nco cmd reg : 0x00

By default FRTC step size register values can be zero. When FRTC driver is loaded, it writes
configured nominal step size value to the step size registers and FRTC starts running. Check
that seconds and nanoseconds values increase.

6.3.2 Rough FRTC Frequency Check

Get FRTC register values at for example ten seconds apart and compare elapsed time to wall
clock time. Example:

(cat /proc/driver/flx_time/component_00_registers ; sleep 10 ; cat

/proc/driver/flx_time/component_00_registers) | grep seconds

 seconds : 137739

 nanoseconds : 771582498

 seconds : 137749

 nanoseconds : 778224842

Note that if OS clock does not run at correct frequency, actual time between above prints may
deviate a lot from ten seconds wall clock time. Calculate elapsed FRTC time and divide it by
elapsed wall clock time. The result should be close to one.

If FRTC does not run at roughly the correct frequency, check that the nominal step size value
is configured correctly. You may also want to check that FPGA design clock part is correct
and that the board in question actually has a correct clock chip.

FRS SoC Evaluation Design

Specification 58 (59) Version 1.5

7 Abbreviations
Term Description

AFEC Advanced Flexibilis Ethernet Controller

BSP Board Support Package

CPU Central Processing Unit

EMAC Ethernet Media Access Control

FCM Flexibilis Configuration Manager

FES Flexibilis Ethernet Switch

FPGA Field Programmable Gate Array

FRS Flexibilis Redundant Switch

FRTC Flexibilis Real Time Clock

HPS Hard Processor System

HSR High-availability Seamless Redundancy

MAC Media Access Control

MDIO Management Data Input/Output

MII Media-Independent Interface

MMC MultiMediaCard

NCO Numerically Controlled Oscillator

NETCONF Network Configuration Protocol

OCRAM On-Chip Random-Access Memory

OS Operating System

PIO Parallel Input/Output

PLL Phase Locked Loop

PPS Pulse Per Second

PRP Parallel Redundancy Protocol

PTP Precision Time Protocol

RGMII Reduced Gigabit Media-Independent Interface

ROM Read-Only Memory

RSTP Rapid Spanning Tree Protocol

SD Secure Digital

SDRAM Synchronous Dynamic Random-Access Memory

SFP Small Form-factor Pluggable transceiver

SoC System-on-a-Chip

SPL Software Preloader

FRS SoC Evaluation Design

Specification 59 (59) Version 1.5

8 References

[1] SGMII/1000Base-X Adapter Specification, FLXD816, version 1.0

[2] Standard IEC 62439-3:2011

[3] IEEE standard 1588-2008

[4] XR7 PTP design specification, xr5_ptp_design.pdf

[5] XR7 Redundancy Supervision design specification,
xr7_redundancy_supervision_design.pdf

[6] Advanced Flexibilis Ethernet Controller (AFEC) User Manual,
AFEC_user_manual.pdf

[7] Flexibilis Ethernet Switch (FES) Manual, FES_Manual.pdf

[8] FRTC User Manual, FRTC_user_manual.pdf

[9] IP License Authentication, Security Chip, Manual, version 1.2.
http://www.flexibilis.com/downloads/Security_Chip.pdf

[10] Interface Adapter Specification, FLXD817, version 1.0

[11] NETCONF, RFC 4741, http://tools.ietf.org/html/rfc4741

[12] Debian, https://www.debian.org/

[13] Emdebian, http://emdebian.org/

[14] Altera SoC Embedded Design Suite User Guide,
http://www.altera.com/literature/ug/ug_soc_eds.pdf

[15] TTTech Flexibilis download portal
https://www.tttech-industrial.com/products/flexibilis/ or
https://www.flexibilis.com/downloads/refdesigncheck_soc.php

[16]

http://www.flexibilis.com/downloads/Security_Chip.pdf
http://tools.ietf.org/html/rfc4741
https://www.debian.org/
http://emdebian.org/
http://www.altera.com/literature/ug/ug_soc_eds.pdf
https://www.tttech-industrial.com/products/flexibilis/
https://www.flexibilis.com/downloads/refdesigncheck_soc.php

	Revision History
	1 About This Document
	1.1 Conventions Used in This Document

	2 General
	3 FPGA Evaluation Design
	3.1 Top Level
	3.2 QSYS Design
	3.2.1 FES System
	3.2.2 HPS

	3.3 FES System Configuration
	3.3.1 Generic Configuration
	3.3.2 Interface Options
	3.3.3 Interface Configuration
	3.3.3.1 Port Interface Type
	3.3.3.2 Port Address Configuration

	3.3.4 Adapter Address Configuration

	3.4 Interface Adapters
	3.5 Avalon/AXI Address Map
	3.6 Compilation
	3.6.1 Folder Structure
	3.6.2 QSYS Generation
	3.6.3 Quartus Project

	4 SW Evaluation Design
	4.1 Boot
	4.1.1 ROM Boot Code
	4.1.2 Preloader
	4.1.3 U-Boot
	4.1.4 Linux

	4.2 Kernel and Drivers
	4.2.1 Linux
	4.2.2 Device Tree
	4.2.3 flx_frs (FES)
	4.2.3.1 Device Tree Bindings
	4.2.3.2 Principle of Operation
	4.2.3.3 Accessing Switch Features
	4.2.3.4 Port Link Mode Management
	4.2.3.5 Managing Port Forwarding Mode
	4.2.3.6 Accessing IPO Entries
	4.2.3.7 Accessing Port Statistics Counters
	4.2.3.8 Accessing MAC Address Table
	4.2.3.9 Accessing Static MAC Address Table
	4.2.3.10 Traffic Shaping
	4.2.3.11 Traffic Policing
	4.2.3.12 Configuring MACsec
	4.2.3.13 Auxiliary Network Interfaces
	4.2.3.14 Independent Interfaces

	4.2.4 flx_frtc (FRTC)
	4.2.5 flx_time
	4.2.6 flx_pio (Altera PIO)
	4.2.7 flx_eth_mdio (Altera MDIO Core)
	4.2.8 i2c_gpio
	4.2.9 stmmac (EMAC)
	4.2.10 Marvell (PHY)

	4.3 User Space
	4.3.1 XR7 PTP
	4.3.2 XR7 Redundancy Supervision
	4.3.3 flx_fes_lib
	4.3.4 XR7 Management Software
	4.3.4.1 XR7 FCM
	4.3.4.2 XR7 IFM
	4.3.4.3 XR7 GUI

	4.3.5 SSH Server
	4.3.6 Debian

	4.4 Compilation
	4.4.1 Toolchains
	4.4.2 Preloader and U-Boot
	4.4.3 Linux Kernel
	4.4.4 Linux Drivers for Flexibilis IPs
	4.4.5 Device Tree
	4.4.6 Other Flexibilis Software
	4.4.7 Third Party Software

	4.5 SD-Card

	5 Customization
	5.1 Changing FES CPU Port Speed
	5.2 Changing PHY address
	5.3 FES Port without a PHY
	5.4 Adding an FES Port
	5.5 Change AXI Bus Type

	6 Troubleshooting
	6.1 Driver Loading
	6.1.1 Letting Drivers Load Automatically
	6.1.2 Loading Drivers Explicitly
	6.1.3 Driver Load Verification

	6.2 FES
	6.2.1 Missing Functionality
	6.2.2 FES Switch Register Access
	6.2.3 FES Port Register Access
	6.2.4 FES Port Adapter Register Access
	6.2.5 FES Port Link Status and Speed for Copper Interfaces
	6.2.6 Use of Correct PHY Driver
	6.2.7 FES Port Link Status and Speed for Fiber Interfaces
	6.2.8 SFP Module Change Detection
	6.2.9 Traffic Problems
	6.2.9.1 RGMII

	6.3 FRTC
	6.3.1 Checking FRTC Is Running
	6.3.2 Rough FRTC Frequency Check

	7 Abbreviations
	8 References

